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ABSTRACT

Small-Target Detection and Observation with Vision-Enabled
Fixed-Wing Unmanned Aircraft Systems

Hayden Matthew Morgan
Department of Electrical and Computer Engineering, BYU

Master of Science

This thesis focuses on vision-based detection and observation of small, slow-moving tar-
gets using a gimballed fixed-wing unmanned aircraft system (UAS). Generally, visual tracking
algorithms are tuned to detect motion of relatively large objects in the scene with noticeably sig-
nificant motion; therefore, applications such as high-altitude visual searches for human motion
often ignore target motion as noise. Furthermore, after a target is identified, arbitrary maneuvers
for transitioning to overhead orbits for better observation may result in temporary or permanent
loss of target visibility.

We present guidelines for tuning parameters of the Visual Multiple Target Tracking (Visual
MTT) algorithm to enhance its detection capabilities for very small, slow-moving targets in high-
resolution images. We show that the tuning approach is able to detect walking motion of a human
described by 10−15 pixels from high altitudes.

An algorithm is then presented for defining rotational bounds on the controllable degrees of
freedom of an aircraft and gimballed camera system for maintaining visibility of a known ground
target. Critical rotations associated with the fastest loss or acquisition of target visibility are also
defined. The accuracy of these bounds are demonstrated in simulation and simple applications of
the algorithm are described for UAS.

We also present a path planning and control framework for defining and following both
dynamically and visually feasibly transition trajectories from an arbitrary point to an orbit over a
known target for further observation. We demonstrate the effectiveness of this framework in main-
taining constant target visibility while transitioning to the intended orbit as well as in transitioning
to a lower altitude orbit for more detailed visual analysis of the intended target.

Keywords: unmanned aircraft systems, fixed-wing UAS, vision-constrained control, computer vi-
sion, constrained path planning, autonomous UAS flight, visual target tracking, small target track-
ing
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Target detection and observation missions have increasingly sought to utilize unmanned

aircraft systems (UAS) equipped with a gimballed camera system for both autonomous and semi-

autonomous missions. When deployed at high altitudes, these systems are capable of covering

large search areas at notably faster rates than human search teams and additionally eliminating

risk in hostile environments. However, the coverage and security afforded by high-altitude search

teams encounter difficulties in detecting and observing small ground targets due to their minimal

pixel footprint and relatively slow motion characteristics. Additionally, transitioning a UAS from

a search maneuver to an orbiting observation maneuver introduces greater risk for losing sight of

a small ground target of interest. Without sufficiently defined vision-based trajectory constraints,

tracked targets may escape UAS visibility long enough to evade further detection and localization.

The interaction between gimbal constraints and flight dynamics is particularly challenging for

fixed-wing UAS as opposed to multirotors due to fewer degrees of freedom in the dynamics.

1.2 Previous Work

The problem of visual target tracking has been treated in a variety of computer vision

works for many different applications [1], [2]. The objective of small, slow target detection and

tracking has important applications in a wealth of fields such as high-altitude traffic management,

wildlife detection, security surveillance, border patrol, and search and rescue. In [3], the Visual

Multiple Target Tracking (Visual MTT) algorithm is introduced as a front-end interface for pro-

viding data points to the Recursive RANSAC (R-RANSAC) algorithm [4] and shows promising

real-time performance capabilities. In [5], the Visual MTT algorithm is tuned for tracking targets

for applications involving the descent of aerial vehicles. However, no work has been done to tune

1
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the Visual MTT algorithm for detection and tracking of small, slow-moving targets. In [1], [2],

[6]–[8], a variety of additional approaches are developed for multiple object tracking from vision

data with varying methodologies for track initialization, track propagation, and object detection

and correlation. The performance of these tracking methodologies vary by intended application

and performance criteria; however, the objective of very small, slow-moving target detection is

generally overlooked.

Defining bounds on constrained vision systems has been an area of interest for many au-

thors. Some researchers have sought to identify gimbal or UAS orientation limits for keeping a

target within the field-of-view. One author defined limits on target azimuth and elevation angles

relative to the optical axis of an inertially-facing camera [9]; however, the approach requires that

the camera be statically mounted so that the roll and pitch axes of the UAS are normal to the span

of the camera’s longitudinal and lateral fields-of-view respectively. In [10], a limit on the UAS roll

angle is defined to maintain a road within the field-of-view by projecting the set of camera pixels

onto the observation plane. The pixel projection with the shortest distance from a street point along

the pixel translation path produced by rolling motion is used to parameterize the UAS roll angle

limits. This approach is once again limited exclusively to static cameras pointed along the UAS

z-axis and only constrains the roll axis. The authors in [11] develop a method for determining

whether a target exists in the field-of-view of a camera; however, no approach is given for defining

allowable motion constraints for maintaining or acquiring target visibility. In applications where a

gimbal is needed, these methods define neither the UAS nor the gimbal limits needed to constrain

vehicle maneuvers for keeping targets within the field-of-view.

Planning trajectories under system constraints has been a growing field of interest over the

last few decades. Many works have developed approaches for controlling a UAS so that vision

constraints are satisfied. In [12], a reactive control law successfully guides a fixed-wing aircraft

to land on a linear runway while maintaining runway visibility. However, the method in [12] is

designed specifically for tracking linear structures rather than generalized targets. Another ap-

proach is considered in [9] for maintaining a moving target in the camera field-of-view (FOV)

with wind disturbances by controlling and constraining the UAS roll angle toward steady orbits.

This approach is effective for transitioning to constant orbits about stationary targets, but was not

designed to ensure visibility for gimbal angle limits commonly found on inexpensive off-the-shelf

2
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gimbals. The authors in [13] use game theoretic and stochastic optimal control for maintaining a

moving, stochastic point target within a constrained FOV. The results of [13] show successful reac-

tive control of a fixed-wing aircraft in following and maintaining line-of-sight of a non-holonomic

ground vehicle; however, the control design does not attempt to predict future trajectory points

where target visibility may be dynamically unattainable. By proving that a UAS system is differ-

entially flat, the authors of [14]–[20] develop frameworks for successfully planning dynamically

feasible trajectories for UAS. However, these works do not account for feasibility of gimbal states

or target visibility throughout the trajectory in their flatness models.

This thesis resolves the issue of vision-based multiple target detection for small, slow-

moving targets by presenting guidelines and sample tuning parameters in Chapter 2 for the Visual

MTT algorithm that enhances its detection capabilities for these applications. To bridge the gap

of defining rotational bounds for camera systems with field-of-view limitations and a variety of

available degrees of freedom, we present a method for determining both the rotational bounds along

controllable axes in Chapter 3. The challenge of defining trajectories that are both dynamically and

visually feasible for maintaining continuous target visibility is enabled by the results of Chapter 4

examined for the case trajectories transitioning to an orbit over the observed target in Chapter 5.

1.3 Summary of Contributions

The contributions of this thesis are listed below.

• This thesis introduces guidelines and tuning parameters for tracking very small, slow-moving

targets in high-resolution images with the Visual MTT algorithm and demonstrates its effec-

tiveness on real flight test data.

• It derives an algorithm for determining the rotational limits of gimballed UAS tracking a

known target.

• It defines an algorithm for determining the most critical UAS or gimbal rotation resulting in

the fastest loss or acquisition of target visibility.

• It introduces a novel differential flatness model and control framework for gimballed fixed-

wing aircraft allowing trajectory tracking under vision constraints.

3
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• It presents a path planning framework for feasibly transitioning to an overhead orbit over a

target while maintaining constant target visibility.

1.4 Thesis Organization

This thesis focuses on the significant components of small target detection and observation

under dynamic and visual constraints. Chapter 2 summarizes the Visual MTT algorithm used for

visual target tracking and discusses guidelines for tuning parameters to enhance the performance

of the system in detecting and tracking very small, slow-moving targets. The effectiveness of the

guidelines is demonstrated by successful tracking of walking human targets from a high-altitude

aircraft equipped with a camera.

Chapters 3 to 5 are original works submitted for publication in various conferences and

journals over the course of this master’s program. In Chapter 3, the rotational constraints of a

UAS observing a target from a gimballed camera system are considered. A novel algorithm for

determining the rotational limits of the system along its available rotational degrees of freedom is

derived and its accuracy is demonstrated in simulation.

Chapter 4 derives a differential flatness model for a gimballed fixed-wing aircraft which can

be utilized in controlling an aircraft to a desired trajectory while providing a direct mathematical

mapping from the trajectory to the inputs required to track it. The effectiveness of the proposed

control model in tracking a desired trajectory and predicting required inputs is demonstrated in a

simulation study.

Chapter 5 constructs a path planning framework for transitioning a gimballed fixed-wing

UAS from an arbitrary starting point to an orbit over a known target as well as a framework for

transitioning between orbits of different altitudes. It is shown that the differential flatness model

derived in Chapter 4 can be used to select path parameters of these transition trajectory models that

account for both dynamic constraints and gimbal constraints of the system in maintaining constant

target visibility throughout. The effectiveness of this framework is demonstrated in a ROS/Gazebo

simulation.

Finally, Chapter 6 concludes with a summary of the various topics discussed in this thesis

as well as a discussion of future research directions.

4



www.manaraa.com

CHAPTER 2. SMALL TARGET TRACKING WITH VISUAL MTT

2.1 Introduction

For search and observe applications of vision-enabled UAS, detection and tracking of tar-

gets from a live camera feed is fundamental in identifying and localizing targets of interest. Current

target detection and tracking techniques encounter a variety of issues while attempting to track rel-

atively small targets. Small targets appear as either too small to be considered distinguishable

features by standard feature-detection algorithms or so slow in relative pixel motion that the object

to be tracked is explained sufficiently by the homography estimation used to propagate correlated

visual features between frames. By properly tuning detection and tracking parameters in the visual

multiple target tracking (visual MTT) algorithm [3], we are able to track objects defined by very

few pixels.

2.2 Visual Multiple Target Tracking Overview

The visual MTT algorithm [3] functions as a front end interface for providing data points

to the recursive RANSAC (R-RANSAC) algorithm [4] for model extraction. Its high-level purpose

is to take in sequential images, extract features of interest, pass feature data points to R-RANSAC,

receive R-RANSAC tracks, and republish images with overlaid markers denoting valid tracks. The

most fundamental role of visual MTT is effectively extracting feature points describing targets of

interest from sequential images. This is performed in three phases:

1. Feature Management (LKT Tracker): Images are passed through a standard LKT optical

flow algorithm which identifies all notable visual features in both frames that correlate with

one another.

2. Transform Management (Simple Homography): Correlated feature-pairs are used to esti-

mate the homography transformation matrix describing a rotational and translational motion

5
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estimate of the features between images assuming features exist on a locally flat observation

plane.

3. Measurement Management (Feature Motion): The algorithm approximates the motion of the

features that do not align sufficiently after transformation by the estimated homography and

extracts feature points that have moved within a user-defined distance from each other. All

points with these motion characteristics are then passed to R-RANSAC as potential moving

target points.

The high-level visual MTT workflow is summarized visually in Figure 2.1.

Figure 2.1: Visual MTT algorithm block diagram

The tracks generated by visual MTT are defined in terms of normalized image plane coor-

dinates of the form

ε = [u,v,1]>. (2.1)

2.3 Parameter Tuning for Small Target Tracking

Visual MTT was designed with a variety of adjustable parameters to allow application-

specific tuning for robust performance in various scenarios. Tuning parameters of interest for

small target detection for both the visual front end and R-RANSAC portions of the visual MTT

workflow include:
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Visual Front End

• Frame stride: Frame count between frames passed to visual MTT (e.g. a frame stride of 2

would process every other image)

• Resize scale: Resolution reduction percentage of the incoming frame before processing in

visual MTT

• LKT max features: Maximum features allowed for consideration in LKT optical flow al-

gorithm

• Minimum feature velocity: Minimum velocity bound between feature-pairs after homog-

raphy transformation

• Maximum feature velocity: Maximum velocity bound between feature-pairs after homog-

raphy transformation

R-RANSAC

• Measurement window: Maximum size of consecutive data point sets considered for defin-

ing tracks

• Lifetime threshold: Minimum number of measurements before track initialization allowed

• Max CMD: Maximum number of continuously missed detections (CMDs) in the inlier re-

gion before track removal

• Inlier threshold: Size of region defining acceptable deviation from estimated track path for

incoming feature points

Tuning visual MTT to work for relatively small, slow-moving target tracking involves a

balance between decreasing computational cost and increasing algorithmic accuracy. For small,

slow-moving target tracking, the maximum and minimum feature velocities are tuned to within the

range of anticipated target motion observed at the intended altitude for the provided camera reso-

lution. Lowering the minimum velocity bound too much may result in noisy false detections from

feature-pair variation caused by homography estimation inaccuracies. Increasing the maximum
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velocity bound too much introduces detections from inaccurately correlated features on distant

parts of the image (e.g. similar looking bushes or similar corners of dashed street lines).

The resize scale of the image also plays a significant role in small target detection. In the-

ory, it is beneficial for the accuracy of the algorithm to reduce the resolution as little as possible to

prevent the loss of small features; however, in practice, too little of a reduction could significantly

increase the computation time required for proper evaluation of high-resolution images resulting in

dropped frames and, consequently, jumpy feature motion between processed frames. Thus, proper

tuning requires balancing justifiable feature loss with computational cost. This balance can be

greatly affected by the computational performance capabilities of the host machine. Additionally,

the frame stride can be adjusted to reduce computational load of higher resolution images. How-

ever, if image motion is too great between frames the LKT tracker may fail to correlate features

correctly and produce a poor homography estimate.

R-RANSAC can be tuned for small target tracking by increasing the window of measure-

ments considered for track creation to increase the odds of picking up potentially noisy detections

of small target features. If camera motion is rapid enough that targets only briefly enter the camera

field-of-view, the lifetime threshold should be reduced to increase the likelihood of detection over

a short window. If the anticipated target does not have easily-detectable features, the max CMD

limit can be increased to allow model survival in the midst of intermittent detections. The inlier

threshold should be large enough to account for motion not described by the selected motion model

(e.g. constant velocity), but small enough to prevent correlation of noisy data.

2.4 Results

To demonstrate the effectiveness of visual MTT in detecting small, slow-moving targets,

a high-resolution camera was fixed to the bottom of an aircraft flying at approximately 60 meters

per second at an altitude of about 1400 meters over two walking human targets. The camera had

a horizontal field-of-view of 16.09 degrees with 2048× 1500 image resolution and publication

rate of 20Hz. Under this configuration, targets were described by approximately 10−15 pixels in

the resulting images. Visual MTT parameters were hand-tuned using the proposed guidelines to

the values shown in Table 2.1 with all other parameters set to their default nominal values. The

resulting output of visual MTT successfully demonstrates detection of both intended targets as
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Table 2.1: Visual MTT small target parameters

frame stride 1.0
resize scale 1.0
min velocity 0.0002
max velocity 0.001

LKT max features 600
measurement window 20

lifetime threshold 10
max CMD 5

inlier threshold 0.04

shown in Fig. 2.2 in real time. We then conclude that the visual MTT algorithm is capable of

detecting small, slow-moving targets from a relatively fast moving camera.

2.5 Visual MTT Target Localization

To be used in a path planning framework, generally the normalized camera coordinates of

the detected target provided by visual MTT must be used to estimate an inertial target position

expressed in a north-east-down coordinate frame. For ground targets on relatively flat terrain, we

assume the target exists on the north-east plane at zero altitude. Localization is then performed by

a simple projection onto the observation plane. Let the camera frame target coordinates be defined

by Eq. (2.1). The vector can be defined as a vector in the inertial frame as

`= Ri
cε,

where Ri
c ∈ SO(3) defines a passive rotation from the camera to the inertial frame. Using the

properties of similar triangles, the inertial target position pt can be obtained using the inertial

camera position p as

pt = p+ `
−p>e3

`>e3
,

where e3 ∈ R3 is the third canonical basis vector.
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Figure 2.2: Detection of two small walking human targets from a downward-facing camera rigidly
attached below an aircraft moving at 60 meters per second from an altitude of 1400 meters. Targets
were nearly imperceptible by human monitoring.
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CHAPTER 3. VISUAL ROTATIONAL CONSTRAINTS OF GENERAL UAS CONFIG-
URATIONS1

3.1 Introduction

The use of a static or gimballed camera on unmanned aircraft systems (UAS) is common in

ground target tracking. For UAS, monitoring a target typically requires maneuvering to a desired

vantage point for ideal observation. However, such maneuvers may result in losing visibility of

the target of interest. This is particularly true for fixed-wing UAS which rely heavily on roll and

pitch adjustments to modify their trajectory. In many cases, maintaining constant visibility of a

target may take precedence over closely following a desired trajectory. If so, maintaining a target

within the camera’s field-of-view may limit the possible motion of an aircraft. Determining the

limitations of aircraft motion is then greatly aided by understanding the rotational limits of a UAS

and gimbal along their controllable axes to ensure constant target visibility.

Many control techniques have been developed to perform general vision-based target track-

ing and following. Several authors have approached the problem by managing the commanded

flight trajectory of the system [9] [21] [22] [10] [23] [24] [25] [26], while another author ap-

proached the problem using hybrid trajectory and gimbal control [27]. Certain approaches have

also been developed specifically for maintaining target visibility with robotic arm end effectors or

ground vehicles [28] [29]. In many of these applications, the proposed control techniques may

have reduced performance or even become unstable if visual contact with the target is lost. It is

then critical to understand the visual limitations of the system to ensure proper visual contact is

held on the target of interest.

Many applications exist where maintaining target visibility becomes largely more impor-

tant than maintaining a predetermined trajectory. One significant application of interest are search

and rescue missions. In these scenarios, a high-flying, fixed-wing UAS equipped with either a gim-

1THIS WORK HAS BEEN ACCEPTED FOR PUBLICATION IN THE 2021 INTERNATIONAL CONFERENCE
ON UNMANNED AIRCRAFT SYSTEMS (ICUAS)
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balled or statically-attached, downward-facing camera may be deployed over a region of interest to

search for, detect, and follow a target. Initially it may be important to maximize camera footprint

coverage of the search space; however, once the object of interest is sighted, it becomes critically

important to keep the identified object in the camera’s field-of-view for classification or localiza-

tion until a rescue team arrives. Maintaining visibility may be crucial if the object is moving and

response teams are unable to get to the object location quickly. A similar fixed-wing or multi-rotor

UAS may be deployed in law-enforcement tracking scenarios involving evasive threats. In these

cases, surveillance provided by vision-enabled UAS reduces the risk of injury to law-enforcement

personnel and civilians. It is then indispensable that threats do not exit the UAS surveillance re-

gion. If they do, then threat localization may become inaccurate, and therefore insufficient, for

safe containment strategies.

Some researchers have sought to identify gimbal or UAS orientation limits for keeping a

target within the field-of-view. One author defined limits on target azimuth and elevation angles

relative to the optical axis of an inertially-facing camera [9]; however, the approach requires that

the camera be statically mounted so that the roll and pitch axes of the UAS are normal to the span

of the camera’s longitudinal and lateral fields-of-view respectively. In [10], a limit on the UAS roll

angle is defined to maintain a road within the field-of-view by projecting the set of camera pixels

onto the observation plane. The pixel projection with the shortest distance from a street point along

the pixel translation path produced by rolling motion is used to parameterize the UAS roll angle

limits. This approach is once again limited exclusively to static cameras pointed along the UAS

z-axis and only constrains the roll axis. The authors in [11] develop a method for determining

whether a target exists in the field-of-view of a camera; however, no approach is given for defining

allowable motion constraints for maintaining or acquiring target visibility. In applications where a

gimbal is needed, these methods define neither the UAS nor the gimbal limits needed to constrain

vehicle maneuvers for keeping targets within the field-of-view.

The main contribution of this paper is a novel algorithm for calculating rotational limits of a

camera system about any axis or set of axes for maintaining a target of interest in the field-of-view.

Typical rotation axes of interest for vision-enabled UAS may include, but are not limited to, UAS

body-frame axes and gimbal azimuth and elevation axes. An additional algorithm is presented

for identifying the axis and angle defining the shortest transition of target visibility given a set
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of available axes. The result identifies the fastest available route for either losing or acquiring

target visibility, depending on current visibility conditions. We show that this approach is able to

accurately identify all critical rotational degrees of freedom about a standard set of rotational axes

(i.e. UAS body x-axis, UAS body y-axis, UAS body z-axis, gimbal elevation, and gimbal azimuth)

in simulation.

The problem is formally described in Section 3.2. The algorithm for identifying all criti-

cal rotation bounds for a given camera and target configuration is developed in Section 3.3. The

algorithm for extracting the closest critical rotation bound and its associated axis is described in

Section 3.4. Simulation results for a gimballed UAS are presented in Section 3.5. Various illustra-

tive examples of the algorithm are shown for vision-enabled UAS in Section 3.6. Conclusions are

provided in Section 3.7.

3.2 Problem Description

In this paper, we will use the following notation. Let F a = {ia, ja,ka} denote coordinate

frame a with right-handed orthogonal axes ia, ja,ka. Let Pc
a/b ∈ R3 denote the position of frame

F a relative to frame F b expressed in frame F c, and let Rb
a ∈ SO(3) denote the rotation matrix that

transforms coordinates in frame F a to coordinates in frame F b. In this paper, we use F i, F b,

F g, F c, and F t to denote the inertial, UAS body, gimbal, camera, and target frames respectively.

We also define the skew-symmetric operator
x

y

z


×

4
=


0 −z y

z 0 −x

−y x 0

 .

To properly define geometric rotational constraints, we will define a UAS equipped with a

two-axis gimballed camera system located at a position Pi
c/i. Let Pi

t/i be the position of the target

of interest expressed in the inertial frame.

The rotation matrix from the inertial to the camera frame is given by

Rc
i = Rc

gRg
bRb

i
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as described by Fig. 3.1.

Figure 3.1: Frame rotations and target vector relative to UAS.

We define the position of the target relative to the UAS in the camera frame to be Pc
t/c,

where

Pc
t/c = Rc

i (P
i
t/i−Pi

c/i).

Let `−1,1, `1,1, `1,−1,and `−1,−1 represent the four corner vectors projected from the camera

in the camera frame defining the bounds of the field-of-view. These boundary vectors are defined

by rotating the e3 basis vector in the camera frame about the ic and jc axes by half of the horizontal

and vertical camera field-of-view angles θh f ov and θv f ov respectively as

`i, j = Ry

(
i
θv f ov

2

)
Rx

(
j
θh f ov

2

)
e3, (3.1)
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where Rx(θ) and Ry(θ) are SO(3) rotation matrices defined as

Rx(θ) =


1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)



Ry(θ) =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 ,

and where e1, e2, and e3 are the canonical basis vectors. These boundaries of the camera field-of-

view are shown in Fig. 3.2. We define the set of four inward-pointing vectors normal to each of the

lateral faces defining the field-of-view as

N = {n1,n2,n3,n4} , (3.2)

where

n1 = `1,−1× `−1,−1 n2 = `−1,−1× `−1,1

n3 = `−1,1× `1,1 n4 = `1,1× `1,−1

as shown in Fig. 3.2. For reference, we define pt ∈F c to be a vector defining the direction of the

target of interest relative to the camera. This can either be calculated as the relative target position

vector in the camera frame

pt = Pc
t/c (3.3)

or by defining a vector using known pixel coordinates in the image frame

pt = K−1pc, (3.4)
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Figure 3.2: UAS field-of-view boundaries and generalized target vector definitions.

where pc is the homogeneous pixel coordinate of the target

pc =


u

v

1


and u and v are pixel column and row coordinates respectively of the target centroid in the image

and K is the intrinsic camera matrix. All rotational constraints are calculated relative to a given

UAS position, UAS orientation, and target position. Therefore, constraint calculations are only

accurate relative to the estimation accuracy of these states. It is also assumed that the horizontal

and vertical camera field-of-view angles are less than 180 degrees. All analysis assumes that

nothing obstructs the field-of-view of the camera from the target (e.g. tree cover or the wing of the

UAS). More conservative constraint buffers may need to be defined to prevent obstruction by UAS

components. It is also assumed that translations between the body and camera frames are small

relative to the distance between the UAS and the target of interest, and can therefore be ignored.

The following lemma verifies whether or not a given target is considered to be in the camera

field-of-view of a given UAS configuration.

Lemma 1 Let pt ∈ R3 be a vector defining the position of the target of interest relative to the

camera in the camera frame F c with the set of vectors both internal and normal to the four lateral
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field-of-view faces in Eq. (3.2) defining the matrix

F =
(

n1, n2, n3, n4

)
∈ R3×4. (3.5)

Then the target is in the field-of-view if and only if

F>pt ≥ 0, (3.6)

where the inequality is understood to hold element-wise.

Proof: In order for pt to be in the camera field-of-view, it must be encapsulated by the four

lateral faces defining the camera field-of-view. If pt is internal to a lateral field-of-view face, it

necessarily follows that for the inward-pointing vector ni normal to the lateral field-of-view face

n>i pt ≥ 0. Therefore, pt is in the field-of-view if n>i pt ≥ 0 for each ni giving Eq. (3.6).

The field-of-view is then defined as

F=
{

x ∈F c : F>x≥ 0
}
. (3.7)

3.3 Critical Axial Rotations

Consider the problem of a camera sensor with a rotational degree of freedom about a given

axis tasked with observing a known target. To understand its rotational limits for maintaining target

visibility, it becomes important to understand what rotations would cause the target to either leave

or enter the camera field-of-view. To identify these critical rotation states, solutions must be found

that result in all possible intercepts of the relative target vector pt with any critical field-of-view

boundary.

Let v be the unit vector defining the rotational axis of interest expressed in the camera

frame. A desired rotational axis can be calculated in an arbitrary frame F a such that the axis can
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be described using a canonical basis vector ei ∈ R3 as

v = Rc
aea

i , (3.8)

where the rotation matrix Rc
a is a rotation from F a to F c. For example, if defining the UAS

body x-axis, the frame F a would be the UAS body frame F b with the rotational vector defined

as ei = e1 = [1,0,0]> and the rotation Rc
a would be Rc

b. The rotation axis v may be calculated in

this form for simplicity; however, the rotation axis may be calculated as needed as long as it is

expressed in F c. The following theorem then identifies the two valid rotation angles along about

v that result in alignment of pt with a selected critical field-of-view boundary.

Theorem 1 Let pt ∈ R3 be a vector defining the target of interest in the camera frame F c. Also,

let v ∈ R3 be a unit vector expressed in F c about which pt is to be rotated. Let N be the set of

four field-of-view normal vectors in Eq. (3.2) and let F be field-of-view boundary matrix given in

Eq. (3.5). Then the set of all rotations Θv about v resulting in critical alignment with any field-of-

view boundary are given by

Θv = {θi ∈Θc : F>R(v,θi)
>pt ≥ 0}

where R(v,θi) is the standard Rodriguez formula for rotation by θi about a vector v given by [30]

R(v,θi) = (I−vv>)cosθi +v× sinθi +vv>, (3.9)

and

Θc =

{
2arctan

(
−b±

√
a2 +b2− c2

c−a

)
: ∀ni ∈ N

}
, (3.10)

where

a = n>i (I−vv>)pt

b = n>i v×pt

c = n>i vv>pt .
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Proof: Let p̂t be the vector produced by rotating the target vector pt about v by an angle θ onto

the desired field-of-view boundary. The standard Rodriguez formula for a rotation θ about a vector

v is defined in Eq. (3.9). Therefore, rotating pt about v by θ gives

p̂t = R(v,θ)pt

= (I−vv>)pt cos(θ)+v×pt sin(θ)+vv>pt .
(3.11)

Since p̂t is the vector result of rotating pt onto the lateral field-of-view face created by adjacent

boundary vectors, it then holds that for a field-of-view normal vector ni ∈ N

n>i p̂t = 0.

Substitution from Eq. (3.11) then produces the form

n>i
(
(I−vv>)pt cos(θ)+v×pt sin(θ)+vv>pt

)
= 0.

We define the general form

acos(θ)+bsin(θ)+ c = 0, (3.12)

where
a = n>i (I−vv>)pt

b = n>i v×pt

c = n>i vv>pt .

To solve for this generalized form, it can be shown that each trigonometric function can be rede-

fined in terms of t = tan
(

θ

2

)
as

sin(θ) =
2t

1+ t2

and

cos(θ) =
1− t2

1+ t2 .

We can then substitute into Eq. (3.12) to get

a
(

1− t2

1+ t2

)
+b
(

2t
1+ t2

)
+ c = 0,
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which can further be simplified into the form

t2(c−a)+ t(2b)+(c+a) = 0.

Using the quadratic formula, we get

t =
−b±

√
a2 +b2− c2

c−a
.

Using t = tan
(

θ

2

)
gives

θ = 2arctan

(
−b±

√
a2 +b2− c2

c−a

)
.

To include rotational intersections with all existing boundaries, we can then state that the set Θc of

all candidate rotation solutions resulting in a boundary alignment is

Θc =

{
2arctan

(
−b±

√
a2 +b2− c2

c−a

)
: ∀ni ∈ N

}
.

There are then at most two solutions for each of the four field-of-view boundaries. Since solutions

are found by only enforcing boundary alignment, it is possible to obtain invalid solutions due

to rear-alignment as shown in Fig. 3.3 or inconsequential solutions when alignment occurs with

one field-of-view bound but extends beyond another bound as shown in Fig. 3.4. Both of these

conditions can be avoided by constraining the point rotated by the proposed solution to be within

the field-of-view as described in Lemma 1. It then holds that the set of all valid rotations Θv is

given by

Θv = {θi ∈Θc : F>p̂t ≥ 0}

with

p̂t = R(v,θi)
>pt ,

where p̂t is the vector obtained by rotating the coordinate frame about v by the candidate θi ∈ Θc

such that pt is rotated as defined by the matrix R(v,θi) from Eq. (3.9). This passive rotation of the

coordinate frame is therefore the transpose of Eq. (3.9).
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Figure 3.3: Invalid rear-alignment of target vector with field-of-view boundary face.

Figure 3.4: Projection is collinear with one critical boundary but extends beyond the other. This
bound extension case is trivial and does not result in a change of the target visibility status when
the proposed solution is perturbed across the critical bound.

A border threshold δb can also be added to validate solutions within the specified error

bound of the border. This approach is useful in ensuring that very small offsets due to computation

error are still considered acceptable when determining the validity of proposed bound solutions.

The following corollary defines the adjusted conditions necessary for this condition.

Corollary 1 Let pt ∈ R3 be a vector defining the target of interest in the camera frame F c. Let

v ∈ R3 be a unit vector expressed in F c about which pt is to be rotated. Let N be the set of

four field-of-view normal vectors in Eq. (3.2) and let F be field-of-view boundary matrix given in
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Eq. (3.5). Then the set of all rotations Θv about v resulting in critical alignment with any field-of-

view boundary within an acceptable, positive offset score δb are given by

Θv = {θi ∈Θc : F>p̄t ≥−δb}

with

p̄t =
R(v,θi)

>pt∥∥R(v,θi)>pt
∥∥ , (3.13)

where R(v,θi) is a Rodrigues rotation matrix defined in Eq. (3.9), and

Θc =

{
2arctan

(
−b±

√
a2 +b2− c2

c−a

)
: ∀ni ∈ N

}
,

where
a = n>i (I−vv>)pt

b = n>i v×pt

c = n>i vv>pt .

Proof: Let Θc be the set of candidate rotational solutions obtained from Eq. (3.10) of Theorem 1.

Lemma 1 can then be used to filter invalid solutions by enforcing solutions to be within the field-

of-view. Let p̄t be the normalized target vector defined as

p̄t =
p̂t
‖p̂t‖

.

Given that N is the set of all inward-pointing normal vectors ni to the four lateral field-of-view

faces as defined in Theorem 1, where previously n>i p̄t = 0 for solutions that aligned with the field-

of-view bound defined by ni, we can say that that for a slight offset from the bound considered

acceptable that

n>i p̄t =−δb,

where δb is a small positive constant. To expand all field-of-view bounds to anticipate slight

computational error, it then holds that

F>p̄t ≥−δb (3.14)
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where the inequality is element-wise.

Defining pt using either inertial target coordinates or current target pixel coordinates cal-

culated in Eqs. (3.3) and (3.4) respectively, an algorithmic process for obtaining the results of

Corollary 1 is proposed in Algorithm 1.

Algorithm 1 Visual Rotational Constraint (VRC) Solver
1: procedure VRC

2: Input: pt ,v,θv f ov,θh f ov,δb

3: Initialize solution set Θv = {}

4: Calculate boundary vectors `i, j using Eq. (3.1)

5: Calculate field-of-view boundary matrix F using Eq. (3.5)

6: Calculate candidate solution set Θc using Eq. (3.10)

7: for all θi ∈Θc do

8: Calculate R(v,θi) using Eq. (3.9)

9: Calculate p̄t(θi) using Eq. (3.13)

10: if p̄t(θi) satisfies Eq. (3.14) then

11: Append θi to Θv as a valid solution

12: else

13: Reject θi

14: end if

15: end for

16: end procedure

It should be noted that the smallest magnitude positive angle and smallest magnitude neg-

ative angle in the solution set θv from Theorem 1 or Corollary 1 define the two closest rotational

solutions on either side of the current orientation resulting in a change in target visibility.
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3.4 Closest Critical Bound Analysis

In this section, we define an algorithm for identifying the closest critical rotation bound

resulting in altered target visibility from a set of normalized rotation axis candidates. Interpretation

of the result, depending on initial visibility conditions, is also explored.

In many cases, it is critical to identify the axis and angle rotation associated with the closest

critical boundary intersection from a set of identified rotation axes V . This is especially the case

when seeking to avoid losing the target over the closest image boundary or seeking to find the

optimal direction for obtaining target visualization when the target is out of sight. This can be

done by identifying the rotational axis about which the smallest magnitude rotation bound exists

from all critical angle solutions about all axes of interest. This closest critical motion assessment

is summarized in Algorithm 2

Algorithm 2 Visual Rotational Closest Constraint (VRCC) Solver
1: procedure VRCC

2: Input: pt ,V,θv f ov,θh f ov,δb

3: Initialize closest axis vcc = {} and angle θcc = ∞

4: for all rotation axes vi ∈V do

5: Θv← VRC(pt ,vi,θv f ov,θh f ov,δb) from Algorithm 1

6: if |minΘv|< |θcc| then

7: θcc←minΘv

8: vcc← vi

9: end if

10: end for

11: end procedure

Note that when the target is in the field-of-view the closest boundary intercept will be

associated with the closest rotational perturbation about which target visibility is lost. However,

when the target is out of the field-of-view, the closest boundary intercept is associated with the

closest rotational perturbation about which target visibility is acquired. Thus, the target’s current

24



www.manaraa.com

field-of-view status, as determined by Eq. (3.7), can be used to interpret the meaning of, and

inherently the response to, the closest critical boundary rotation axis and angle.

3.5 Results

To assess the accuracy of critical angle calculations, a simple Python simulation was created

for visualizing a UAS with an inertially-mounted, two-axis gimbal camera system observing a red

target in free space. This simulation allowed orientation state inputs for both UAS Euler angles and

gimbal azimuth and elevation angles as well as R3 positional inputs for the UAS and target. All

UAS and gimbal orientation states and UAS and target position states were initialized randomly

and then given random-amplitude sinusoidal perturbations in every rotational and translational

degree of freedom of the UAS and gimbal over the course of the simulation. The randomized

initial UAS, gimbal, and target configurations are shown in Fig. 3.5 alongside a visualization of

the initial normalized image plane describing the camera field-of-view with the resulting target

projection.

To verify the validity of Algorithm 1, the relative target vector was projected onto the

normalized image plane at discrete time steps alongside the field-of-view bounds by division of

the third vector element

pi =
pt

p>t e3
,

where pi ∈ P2 is the resulting projection of pt onto the normalized image plane such that the third

vector element is 1. These results are shown in Fig. 3.6, where the projection color was set to blue

if the configuration met the field-of-view condition in Eq. (3.7) and red otherwise.

The range of rotational perturbations from the current rotation states about each UAS and

gimbal axis resulting in target visibility was plotted as a line at each time step using the calculated

bounds calculated with Algorithm 1 as shown in Figs. 3.7 and 3.8.

The blue lines in Figs. 3.7 and 3.8 indicate that the target met the field-of-view condition

in Eq. (3.7) at the time step while red lines indicate that the target was out of the line of sight.

Time steps with no visibility range plotted indicate that no rotation about the proposed axis could

result in target visibility. As would be expected, the visibility region is only blue when the region

includes the dashed reference line indicating visibility with no perturbation. For the UAS yaw
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Figure 3.5: Starting configuration of UAS, gimbal and target in simulation with initial camera
field-of-view. Red dashed line represents the optical axis. Red lines represent camera field-of-
view corner vectors. Cyan lines represent camera field-of-view region projected onto the ground
plane. Dashed cyan line represents positive ic field-of-view bound for reference.
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Figure 3.6: Trajectory of target projection on camera’s normalized image plane over time with
sinusoidal rotational and translational perturbations of UAS, gimbal, and target. Projection points
are only blue when within the field-of-view bounds as expected.

bounds and gimbal azimuth bounds, many instances include more than one possible visible region

per time step due to the rectangular shape of the field-of-view. Note that in some configurations as

the target projection sufficiently aligns with the gimbal azimuth axis, the gimbal azimuth bounds

include all rotational values as would be expected.

3.6 Applications for Unmanned Aircraft Systems

The potential applications of Algorithms 1 and 2 extend to any camera system affected by

a single or set of rotational axes. Though the approach is generic, many interesting applications

exist for vision-enabled UAS systems. In this section, we describe several illustrative examples of

the implementation of these algorithms on a UAS system as well as how the results can be used to

enhance the design and control of a UAS.
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Figure 3.7: Evolving UAS rotation angle perturbation ranges resulting in target visibility at discrete
time steps given randomized initial states and sinusoidal rotational and translational perturbations
of the UAS, gimbal, and target. Regions are colored blue if the current configuration meets the
target visibility constraint with red indicating otherwise. Solid black lines indicate gimbal bounds.
Dashed black line denotes no perturbation along axis of interest for reference. The visibility range
is only blue when inclusive of the current state indicated by the dashed line as would be expected.
Note that multiple visibility regions occur for the yaw axis as a result of crossing multiple FOV
boundary corners.
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Figure 3.8: Evolving gimbal rotation angle perturbation ranges resulting in target visibility at
discrete time steps given randomized initial states and sinusoidal rotational and translational per-
turbations of the UAS, gimbal, and target. Regions are colored blue if the current configuration
meets the target visibility constraint and red otherwise. Solid black lines indicate gimbal bounds.
The dashed black line denotes the zero-perturbation state along the axis of interest for reference.
The visibility range is only blue when inclusive of the current state indicated by the dashed line as
would be expected.

3.6.1 UAS Target Tracking Optimal Gimbal Elevation for Straight, Level Flyover

Suppose a UAS is instructed to quickly fly over a structure of interest for observation and

reconnaissance. The primary objective is to collect as much video feed as possible of the structure

and its immediate surroundings from a downward-facing camera system mounted to the bottom of

the UAS with a single, controllable gimbal elevation axis. The static, inertial position of the center

of the structure Pt and inertial UAS position Pu are given. Assuming wind disturbances are negli-

gible, the intended ground speed Vg and altitude of the UAS are calculated to be 50 meters/second

and 1000 meters respectively, resulting in relatively level flight. The camera system has vertical
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and horizontal field-of-view angle parameters of 10 degrees. Due to resolution limitations of the

camera, video data is only useful when the target is within 2000 meters of the camera. Assuming

the flight path is a straight line path over the structure with relatively level flight required to main-

tain the intended airspeed and altitude, the video data can be calculated to have sufficient resolution

once the UAS has a north-east distance of 1732 meters from the target. The discrete UAS position

can be simply modeled as

Pu(t) = Pu(0)+Vgt,

where Pu is the UAS position and t = 0 is the time at which the UAS is within 2000 meters of the

structure. The generalized target vector pt ∈F c can then be calculated as

pt = Pt−Pu.

For this single-axis gimbal case, the gimbal elevation axis aligns with the ic axis in the camera

frame; therefore, the axis of rotation v can be defined in the camera frame to be v = [1,0,0]>.

Selecting a very small computational error buffer δb = 10−10, Algorithm 1 can be used at each

time step to calculate the rotational perturbations about the gimbal elevation axis resulting in target

alignment with the boundary of the camera field-of-view. Solving for the bounds at time steps of

0.25 seconds produces the plot shown in Fig. 3.9.

Note that, as expected, the elevation axis must pitch upward to acquire target visibility

when heading toward the target until it is nearly under the aircraft. The bounds then indicate the

relative rotations possible while maintaining target visibility.

At each time step, the optimal gimbal elevation angle for keeping the target in the field-of-

view is selected as the mean angle between the minimum and maximum boundary angles calcu-

lated as

θm =
θmin +θmax

2
. (3.15)

The set of mean elevation angles θm at each discrete time step is fitted to an arctangent curve by

optimizing the constant parameters a, b, c, and d with the function model

θopt(t) = aarctan(b(t + c))+d (3.16)
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Figure 3.9: Gimbal elevation axis perturbation ranges resulting in target visibility at discrete time
steps for flyover of known altitude with constant velocity and static, downward-facing camera.
Solid black lines indicate gimbal bounds. Dashed black line denotes no perturbation along axis of
interest for reference. As expected, the gimbal elevation must pitch upward at first to capture the
target in the field of view and then decreases as the target passes below the aircraft.

producing the optimal coefficients −1.0, 0.05, −1.723, and −1.794× 10−9 respectively where

θopt(t) is the optimal gimbal elevation state function for maintaining visibility of the target of

interest. Thus, the optimal gimbal elevation angle trajectory is

θopt(t) =−arctan(0.05(t−1.723)). (3.17)

Repeating the simulation with these optimal commanded states for gimbal elevation produces

bounds centered on the commanded gimbal elevation state at each time step, which indicates that

the target has the largest possible rotational visibility buffer producible by that axis of motion as

shown in Fig. 3.10.

The target projections onto the normalized image plane shown in Fig. 3.11 show that the

target is held at the image center throughout the trajectory, confirming both the curve fit model

validity and the effectiveness of the algorithm in identifying the optimal gimbal states along the

elevation axis for maintaining the largest rotational target field-of-view buffer.
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Figure 3.10: Gimbal elevation axis visibility ranges using the proposed optimal control. Dashed
black line denotes no perturbation along axis of interest for reference. Optimal control produces
visibility with largest possible rotational distance from visibility bounds.

Figure 3.11: Trajectory of target projection on camera’s normalized image plane using the optimal
control law over time with gimbal elevation commands θopt(t) defined in Eq. (3.17). Associated
VRC bounds shown in Fig. 3.10.
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Additionally, θopt could be selected to be

θopt(t) = θmin(t)

or

θopt(t) = θmax(t)

to produce the minimum and maximum trajectory bounds over which the gimbal elevation axis is

allowed to rotate while maintaining target visibility. Fitting the minimum and maximum gimbal

elevation angle limits to the arctangent function described by Eq. (3.16) produces the commanded

states

θmin(t) =−arctan(0.05(t−1.723))−0.08726646

and

θmax(t) =−arctan(0.05(t−1.723))+0.08726646.

Flexibility is therefore allowed for gimbal motion or state uncertainty as long as the desired gim-

bal elevation trajectory states or uncertainty bounds lie between these maximum and minimum

trajectory functions for all time.

3.6.2 UAS Target Tracking Optimal Gimbal Elevation for Straight Flyover with Constant
Climb

Suppose a UAS is commanded to quickly fly over a structure of interest with parameters

similar to those described in Section 3.6.1 while maintaining a constant climb rate. The intended

ground speed Vg is calculated to be 50 meters/second with a starting altitude of 1000 meters and

desired final altitude of 1500 meters. Once within a north-east distance of 500 meters from the

target the UAS pitch angle is held at a constant 10 degrees to produce a constant climb rate until

the final altitude is reached. The UAS position can be simply modeled as

Pu(t) = Pu(0)+Vgt,

33



www.manaraa.com

where Pu is the UAS position and t = 0 is the time at which the UAS is within 500 meters of the

structure. The generalized target vector pt ∈F c can again be calculated as

pt = Pt−Pu.

Using the same gimbal elevation axis and error buffer as Section 3.6.1, Algorithm 1 can be used

at each time step to calculate the rotational offset bounds about the gimbal elevation axis. Solving

for the gimbal elevation axis constraints at time steps of 0.25 seconds produces the boundary plot

shown in Fig. 3.12.

Figure 3.12: Gimbal elevation axis visibility bounds over time for flyover of constantly increasing
altitude with constant velocity and a static, downward-facing camera. Dashed black line denotes
current gimbal elevation configuration.

At each time step, the optimal gimbal elevation angle for keeping the target in the field-of-

view is calculated using Eq. (3.15). Using the arctangent model defined in Eq. (3.16), the optimal

gimbal elevation states are calculated to be

θopt(t) =−arctan(0.04666(t−0.29745)). (3.18)
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The resulting rotational bounds using these gimbal elevation angles shown in Fig. 3.13 again indi-

cate that the target is held centered in the camera field-of-view with a symmetric, feasible relative

error bound.

Figure 3.13: Gimbal elevation axis rotational visibility bounds over time for constant climb with
constant velocity and using the optimal gimbal elevation control θopt(t) defined in Eq. (3.18).
Dashed black line denotes current gimbal elevation configuration. Proposed gimbal states result in
equal distance from image bounds.

3.6.3 UAS Target Tracking Optimal Orbit for Static Camera Mount Offset

Suppose a UAS is commanded to orbit clockwise over a static target of interest at a constant

altitude. The primary objective is to identify the minimum allowable UAS roll angle and orbit

radius for holding a structure within the field-of-view from a camera system statically mounted

with a 90 degree azimuth offset to the bottom of the UAS and an elevation offset φg of −30

degrees. The static, inertial position of the center of the structure Pt is given. It is assumed that

wind disturbances are negligible. The intended ground speed Vg and altitude of the UAS are defined

to be 50 meters/second and 1000 meters respectively during the orbit. The camera system has

vertical and horizontal field-of-view angle parameters of 10 degrees. Due to resolution limitations

of the camera, video data is again only useful when the target is within 2000 meters of the camera.
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The video data can then be calculated to have sufficient resolution once the UAS has a north-east

distance of 1732 meters from the target. Thus, the maximum allowable orbit radius is Rmax = 1732

meters.

Using a standard coordinated turn model as defined in [31], with no wind and a negligible

flight path angle, we get the orbit radius relationship

R =
V 2

g

g tanφ
, (3.19)

which simplifies to

φ = tan−1

(
V 2

g

gR

)
, (3.20)

where R is the orbit radius, g is gravitational acceleration, and φ is the UAS roll angle. By simu-

lating increasing lateral distances from the target of interest with roll angles defined by Eq. (3.20)

and running the resulting states through Algorithm 1 at each time step, the roll angle constraints

will identify radii where the target is within the field-of-view. All discrete configurations with

confirmed target visibility as defined by Eq. (3.7) can be considered viable orbits for maintaining

target visibility. Let the axis of interest be the roll axis of the UAS. This axis aligns with the −ic

axis in the camera frame; therefore, the axis of rotation v can be defined in the camera frame to be

v = [−1,0,0]>. Selecting a very small computational error buffer δb = 10−10 and solving for the

roll axis constraints at lateral distance steps of 1.0 meter produces the roll axis bounds shown in

Fig. 3.14.

As seen in Fig. 3.14, there are two viable orbit radius regions defining the set R= [181,366]∪

[696,1418] meters. The optimal orbit for centering the target in the camera field-of-view can be

found by identifying the orbit radius where the average of the maximum and minimum roll bounds

is equal to zero, indicating the maximum possible rotational motion in either direction along the

roll axis before target visibility is lost. For this case, two optimal orbit radii exist at 244 meters and

1045 meters. If image quality is considered most critical, the 244 meter orbit should be selected to

minimize target range; however, if a less aggressive roll or greater orbit flexibility is desired, the

1045 meter orbit radius would be a better selection.
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Figure 3.14: UAS roll axis rotational visibility bounds for incremented radii with known altitude,
constant velocity, and static, roll-offset camera. Dashed black line denotes current roll configura-
tion.

3.6.4 UAS Target Tracking Optimal Camera Roll Offset for Defined Orbit

Suppose a UAS is commanded to orbit clockwise over a static target of interest at a con-

stant altitude with parameters similar to those described in Section 3.6.3. The primary objective is

to identify the optimal static mount angle along the −ib axis for a camera system rigidly attached

to the bottom of the UAS such that it points out the right wing given a ground speed Vg = 50 me-

ters/second and desired orbit radius R = 1000 meters. Using the coordinated turn model described

in Eq. (3.20), the associated UAS roll angle is φ = 14.297 degrees. Let the axis of interest be the

gimbal elevation axis of the UAS given a 90 degree azimuth offset to initially point the camera

out of the right wing. This axis aligns with the ic axis; therefore, the axis of rotation v can be

defined in the camera frame to be v = [1,0,0]>. Selecting a very small computational error buffer

δb = 10−10, Algorithm 1 produces minimum and maximum elevation visibility angles of −35.703

and −25.703 degrees respectively relative to the current elevation angle for target visibility. The

optimal mount elevation offset is then the mean angle of −30.703 degrees with approximately

±5.02 degrees of allowable elevation offset error before the target exits the field-of-view.

37



www.manaraa.com

3.7 Conclusion

In this paper we presented an algorithm for determining the instantaneous critical rotational

limits of a camera system along a given rotational axis for maintaining a target within a defined

visual field-of-view. We demonstrated the accuracy of this approach using randomized rotational

inputs on a simulation defining a UAS system with a gimballed camera mechanism and identified

an approach for calculating the most critical angle and axis of rotation for a given configuration.

Additional illustrative examples were discussed for various vision-enabled UAS applications. Fu-

ture work includes additionally calculating critical translational motion of the camera and UAS for

maintaining target visibility, accounting for occlusion points created by UAS appendages such as

wings and landing gear, and accounting for UAS, gimbal, and target state uncertainties. Additional

work could include using resulting visibility bound from all controllable axes to produce optimal

control of all UAS and gimbal rotations simultaneously for maintaining target visibility. Addi-

tional work could be done in defining feasibility bounds of simultaneous rotational bound motion

to account for more realistic dynamic system trajectories.
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CHAPTER 4. FLATNESS-BASED CONTROL OF A GIMBALLED FIXED-WING
UAS1

4.1 Introduction

Unmanned aircraft systems (UAS) equipped with a downward-facing, gimballed camera

system are increasingly being used as a solution for aerial-to-ground target tracking. Both au-

tonomous and semi-autonomous UAS target tracking have applications in fields such as search

and rescue, law enforcement, national security, border patrol, covert operations, and wildlife man-

agement. In these cases, maintaining targets within the field-of-view (FOV) of the UAS is critical.

If FOV constraints are not sufficiently maintained, then visually tracked targets will be lost and

may evade detection and localization in the future. The interaction between gimbal constraints and

flight dynamics is particularly challenging for fixed-wing UAS as opposed to multirotors due to

fewer degrees of freedom in the dynamics.

Several works have developed techniques for controlling a UAS to enforce vision con-

straints. In [12], a reactive control law successfully guides a fixed-wing aircraft to land on a linear

runway while maintaining runway visibility. While effective, this method is designed specifically

for tracking linear structures rather than more generalized targets. A strategy is proposed in [9] for

maintaining a moving target in the FOV with wind disturbances by controlling and constraining

the UAS roll angle toward steady orbits. This approach is effective for transitioning to constant

orbits about stationary targets, but was not designed for following other arbitrary UAS or target tra-

jectories and is therefore limited in its scope. The authors in [13] use game theoretic and stochastic

optimal control for maintaining a moving, stochastic target within a constrained FOV. The results

of [13] show successful reactive control of a fixed-wing aircraft in following and maintaining line-

of-sight of a non-holonomic ground vehicle; however, the control design does not attempt to predict

future trajectory points where target line-of-sight may be outside the FOV. By proving that a UAS

1THIS WORK HAS BEEN ACCEPTED FOR PUBLICATION IN THE 2021 INTERNATIONAL CONFERENCE
ON UNMANNED AIRCRAFT SYSTEMS (ICUAS)
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system is differentially flat, the authors of [14]–[20] develop a framework for successfully planning

dynamically feasible trajectories for UAS. However, these works do not account for feasibility of

gimbal states or target visibility throughout the trajectory in their flatness models. The authors

of [32]–[36] develop various control laws that account for input saturation constraints, however,

constraints are not considered on gimbal angles for maintaining visibility of a target.

The main contribution of this work is the development of a differential-flatness-based

model for a fixed-wing UAS equipped with a gimballed camera system that can be used for vi-

sual target tracking under gimbal angle saturation constraints and angular rate constraints. The

flat outputs for the model are the 3D flight trajectory of the UAS and the 3D trajectory of the

target. Differential flatness for this system is shown in Section 4.3. A second contribution of

the paper is the derivation of an LQR controller that uses the differential flatness model to both

follow the defined UAS trajectory, and to align the optical axis of the camera with the UAS-to-

target line-of-sight vector. The LQR controller is briefly described in Section 4.4. A simulation

study is presented in Section 4.5 that demonstrates ground target tracking from an orbiting UAS.

Conclusions are provided in Section 4.6.

4.2 Problem Description

4.2.1 Mathematical notation

Coordinate frames are right-hand and denoted as F a = {ia, ja,ka} where ia, ja, and ka are

the basis vectors. The expression xc
a/b denotes a vector x of frame F a measured with respect to

frame F b expressed in frame F c. Let Rb
a ∈ SO(3) denote the rotation matrix that transforms coor-

dinates in frame F a to coordinates in frame F b. The canonical basis vectors in R3 are denoted by

e1, e2, and e3. The frames F i, F b, F g, F s and F t denote the inertial, body-fixed, gimbal, sta-

bility and target reference frames respectively. Let bxc define the skew-symmetric matrix operator

on the generalized vector x = (x1,x2,x3)
> ∈ R3 such that

bxc=


0 −x3 x2

x3 0 −x1

−x2 x1 0

 .
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4.2.2 Problem Formulation

The equations of motion for a fixed-wing aircraft are given by

ṗi
b/i = vi

b/i (4.1)

v̇i
b/i = ge3 +

1
m

Ri
s ((T cos(α)−D)e1−Le3) (4.2)

Ṙi
b = Ri

bbω
b
b/ic (4.3)

ω
b
b/i = ωc, (4.4)

where p is the UAS position, v is the UAS velocity, g is the acceleration due to gravity, m is the

system mass, ω is the angular velocity of the UAS, ωc are the commanded angular rates, α is the

angle of attack, D ∈R is the drag on the aircraft along the negative ib body-fixed axis, T ∈R is the

thrust produced by the aircraft along the ib body-fixed axis, and L∈R is the lift force of the aircraft

along the negative kb body-fixed axis as described in [31]. To simplify the model and enable the

derivation of a differential flatness model, we will assume that the rudder deflection, side-slip angle

and deviation from the stable angle of attack α0 are relatively small and that the drag induced by

the control surfaces is negligible. Using these assumptions, the drag and lift terms can be defined

as

D(vi
b/i,ω

b
b/i) =

1
2

ρV 2
a S(CD0 +CDq

c
2Va

ω
b
b/i
>e2) (4.5)

and

L(vi
b/i,ω

b
b/i) =

1
2

ρV 2
a S(CL0 +CLq

c
2Va

ω
b
b/i
>e2) (4.6)

respectively, where ρ is the air density, Va ∈ R+ is the UAS airspeed, S is the planform area of the

wing, c is the mean cord width of the wing, and CD0 , CDq , CL0 , and CLq are aerodynamic coefficients

as defined in [31]. Assuming zero wind, the UAS airspeed is

Va =
∥∥∥ṗi

b/i

∥∥∥ . (4.7)
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We assume that the UAS is equipped with a two-axis gimballed camera as defined in [31], where

the gimbal azimuth θaz and elevation θel angles are assumed to be commanded directly using a

rapid-response inner control loop. The objective is to image and follow a known ground target

defined by

ṗi
t/i = vi

t/i, (4.8)

where pi
t/i is the position of the target to be tracked and vi

t/i is the target velocity.

4.3 Differential-flatness Model for Vision-Constrained Fixed-Wing UAS

The general nonlinear system defined by

ẋ = f (x,u), (4.9)

where x is the state and u is the control input, with the output mapping

z = h(x), (4.10)

is differentially flat with the flat output z if the following conditions are met [37]:

1. The components of z are not differentially related over time,

2. The state x can be written as a function of the flat output and its derivatives, i.e., there exists

a function g1, and a finite scalar m1 such that

x(t) = g1

(
z(t),

d
dt

z(t), · · · , dm1

dtm1
z(t)
)
.

3. The control inputs u can be written as a function of the flat output and its derivatives, i.e.,

there exists a function g2 and a finite scalar m2 such that

u(t) = g2

(
z(t),

d
dt

z(t), · · · , dm2

dtm2
z(t)
)
.
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Therefore, differentially flat systems admit a direct algebraic mapping from the flat outputs to the

states and control inputs. This mapping allows trajectory planning to be performed in the lower-

dimensional flat output space with a closed-form solution to control inputs along the anticipated

path.

The main result of the paper is given in following theorem that states that the UAS/gimbal

system is differentially flat with flat output given by the UAS and target positions.

Theorem 2 Assume that

1. there is no wind,

2. the angle-of-attack is constant and equal to α0,

3. the side-slip angle is zero, and

4. the UAS/target line-of-sight vector is aligned with the camera optical axis.

Then the aircraft and target defined by Eqs. (4.1) to (4.5), (4.7) and (4.8) with states and inputs

given by

x = {pi
b/i,p

i
t/i,v

i
b/i,R

i
b}

u = {ωb
b/i,T,θaz,θel},

are differentially flat with flat output

z 4=
(

z>b , z>t
)>

=
(

pi>
b/i, pi>

t/i

)>
,

where all states and inputs are defined by zb, żb, z̈b,
...z b and zt .

Proof: We first show that the UAS subsystem is differentially flat and then that the UAV/gimbal/target

system is differentially flat. For the UAS subsystem, we begin by showing that the system states

x can be described in terms of the flat outputs z, a finite number of its derivatives and the control

inputs u. Trivially, pi
b/i(zb) = zb, and vi

b/i(żb) = żb. Let the stability-to-inertial rotation matrix Ri
s

be expressed as

Ri
s =
[
r1 r2 r3

]
,
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where r j is the jth stability frame axis of the fixed-wing expressed in the inertial frame. By as-

sumptions (1) and (2), the aircraft’s velocity is aligned with the is stability axis, i.e.,

r1 =
żb

‖żb‖
.

Accordingly, Eq. (4.2) becomes

v̇i
b/i−ge3 =

(T cos(α0)−D)r1−Lr3

m
. (4.11)

Taking the dot product with r1 gives

(T cos(α0)−D)

m
= r>1 (v̇

i
b/i−ge3) (4.12)

Rearranging Eq. (4.11), and using Eq. (4.12) gives

L
m

r3 = (r>1 (v̇
i
b/i−ge3))r1− (v̇i

b/i−ge3). (4.13)

Since ‖r3‖= 1, we then conclude that

r3 =
(r>1 (v̇

i
b/i−ge3))r1− (v̇i

b/i−ge3)∥∥∥(r>1 (v̇i
b/i−ge3))r1− (v̇i

b/i−ge3)
∥∥∥ .

It necessarily follows that

r2 = r3× r1.

The stability-to-inertial rotation matrix can then be used to calculate the body-to-inertial rotation

matrix as

Ri
b = Ri

sR
s
b,

where

Rs
b =


cos(α0) 0 sin(α0)

0 1 0

−sin(α0) 0 cos(α0)

 ,
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as defined in [31]. Therefore, the rotation matrix Ri
b can be written as a function of the flat outputs

Ri
b(żb, z̈b).

From Eq. (4.3), the angular velocity vector is given by

bωb
b/ic= Ri>

b Ṙi
b.

Defining the “vee” operator to be


0 −x3 x2

x3 0 −x1

−x2 x1 0


∨

=


x1

x2

x3

 ,

the angular velocity can then be expressed in terms of flat outputs as

ω
b
b/i(żb, z̈b,z

(3)
b ) = (Ri>

b Ṙi
b)
∨. (4.14)

Equation (4.12) can be rewritten in terms of T as

T =
m(r>1 (v̇

i
b/i−ge3))+D

cos(α0)
. (4.15)

Substituting Eqs. (4.5) and (4.7) into Eq. (4.15), and using the fact that Va and ωb
b/i are defined in

terms of żb, and z̈b gives

T (żb, z̈b,z
(3)
b ) =

m
cosα0

r>1 (v̇
i
b/i−ge3)+

ρV 2
a S

2cosα0
(CD0 +CDq

c
2Va

ω
b
b/i
>e2).

Therefore, since all UAS states and inputs are defined in terms of flat outputs, the UAS subsystem

is then differentially flat.

The normalized line-of-sight vector from the UAS to the target is given by

p̄b
t/b(żb, z̈b,zt) =

Ri>
b (pi

t/i−pi
b/i)∥∥∥Ri>

b (pi
t/i−pi

b/i)
∥∥∥ ,
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Define the camera optical axis as

`b
cam = Rb

ge1, (4.16)

where the body-to-gimbal rotation matrix Rb
g defined as [38]

Rb
g(θaz,θel) =


cθelcθaz −sθaz −sθelcθaz

cθelsθaz cθaz −sθelsθaz

sθel 0 cθel

 ,

where cϕ

4
= cosϕ and sϕ

4
= sinϕ Therefore Eq. (4.16) gives

`b
cam =


cosθel cosθaz

cosθel sinθaz

sinθel

 . (4.17)

By Assumption (4), p̄b
t/b = `b

cam, implying that

θel(zb, żb, z̈b,zt) = arcsin
(

e>3 p̄b
t/b

)
θaz(zb, żb, z̈b,zt) = arctan2

(
e>2 p̄b

t/b,e
>
1 p̄b

t/b

)
.

Since all states and inputs are defined in terms of flat outputs and their derivatives, the UAS/gimbal/target

system is differentially flat.

The differential flatness model given in Theorem 2 therefore provides a direct mapping

from the UAS and target trajectories to the input space of the UAS and gimbal. Thus, this model

can be used to rapidly check if a given trajectory will result in input saturation for dynamic feasi-

bility and target tracking feasibility.

4.4 Error State LQR Control

By Theorem 2, the fixed-wing/camera target tracking system is differentially flat and, there-

fore, produces a direct feed-forward mapping from the flat outputs to the desired states and inputs.

An LQR feedback controller is then used to track the desired trajectory as shown in Fig. 4.1.
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Figure 4.1: Control architecture uses a given inertial position trajectory p up to its third derivative
to define the predicted control u(df) and desired aircraft states x(df) using the differential flatness
mapping. The error between the desired states and actual states x are passed to an LQR controller
whose control output ulqr augments the feed-forward inputs produced by the differential flatness
map.

The error state of the LQR controller is given by

e = [p̃>,Ṽa,Θ̃
>, ω̃>,I>]>,

where

p̃ 4=


ea

et

h̃



=


cos χ sin χ 0

−sin χ cos χ 0

0 0 −1

(pi
b/i(df)−pi

b/i

)

are the axial position error, transverse position error, and altitude error, where χ is the course angle

of the aircraft,

Ṽa
4
=Va(df)−Va

is the airspeed error,

Θ̃
4
= Euler(Ri

b(df))−Euler(Ri
b)
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is attitude error expressed in local Euler coordinates with Euler(·) being the X-Y-Z Euler angle

decomposition of a rotation matrix,

ω̃
4
= ω

b
b/i(df)−ω

b
b/i

is the angular velocity error, and

I 4=



∫ t
−∞

h̃dτ∫ t
−∞

(Va(df)−Va)dτ∫ t
−∞

eadτ∫ t
−∞

etdτ


are the integral errors on altitude, airspeed, axial position, and transverse position errors.

Linearizing around the aircraft model defined in [31] at level-flight conditions produces the

state-space model

ė = Ae+Gũ.

The LQR controller is ũ = −Ke, where the LQR gains K are found by solving the associated

algebraic Riccati equation.

4.5 Simulation Results

To assess the effectiveness of the differential-flatness model and LQR controller, we sim-

ulate a fixed-wing UAS with a two-axis gimbal camera system observing a ground target, using

the ROS/Gazebo simulation environment. The UAS dynamics were implemented following the

fixed-wing model in [31] with parameters defined in Table 4.1.

For the UAS, a circular trajectory was defined at a constant altitude of 3000 meters with

a radius of 2500 meters, a constant airspeed velocity of 120 meters per second, and a starting

north-east-down (NED) inertial position of [−2000,100,−3000] meters initially facing north. The

ground target was given a 1000 meter radius circular trajectory with a starting inertial position at

[−1000,0,0] meters and a constant velocity of 20 meter per second. Higher-order derivatives of the
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Table 4.1: Simulated fixed-wing system parameters

Param Value Param Value Param Value
m 1800.0 Jx 700.0 Jy 5000.0
Jz 5500.0 Jxz 70.0 S 9.0
b 7.0 c 1.5 CL0 0.15

CLα
4.5 CLq 9.0 CLδe

0.3
CD0 0.02 CDα

-0.3 CDq 0.0
Cl0 0.0 Clβ -0.16 Clp -0.4
Clr 0.1 Clδa

0.06 Clδr
0.04

Cm0 -0.02 Cmα
-2.4 Cmq -11.0

Cmδe
-0.5 Cn0 0.0 Cnβ

0.1
Cnp 0.02 Cnr -0.3 Cnδa

0.0
Cnδr

-0.08 CY0 0.0 CYβ
-0.5

CYp -0.1 CYr 0.6 CYδr
0.16

UAS trajectory were easily obtained using derivative properties of the sine and cosine components

used to create the circular trajectories. The resulting trajectories projected onto the north-east plane

are shown in Fig. 4.2.

Figures 4.3 and 4.4 show the error in the actual states and inputs relative to those required to

align the ground target with the optical axis and those predicted by the differential-flatness model.

To demonstrate the error in aligning the target with the optical axis, we define the offset angle

η = cos−1

(Ri
b`

b
cam

)> pi
t/i−pi

t/b∥∥∥pi
t/i−pi

t/b

∥∥∥


between the relative target vector and optical axis.

As can be seen in Figs. 4.3 and 4.4, the flatness-based controller is able to successfully

follow the desired trajectory and maintain the target line-of-sight angle to within±1.2 degree after

the initial transients. The constant 1 degree error in aircraft roll and pitch is a result of estimating a

constant angle of attack at steady level flight conditions and the simplifying assumption of no side

slip made in the proposed differential flatness model. The proposed control method was success-

fully able to maintain target visibility as predicted through the duration of the flight trajectory. It
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Figure 4.2: Orbit trajectory of the UAS and linear trajectory of the ground target projected onto
the inertial north-east plane. Projection of the camera field-of-view on the ground plane containing
the target is shown. As can be seen, the proposed control model holds the target relatively close to
the center of the camera field-of-view.
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Figure 4.3: Error between UAS position, airspeed and input states predicted by the differential-
flatness model and those of the desired trajectory. The aircraft successfully converges to the desired
orbit trajectory and predicts inputs relatively well. The noisiness of the axial position error is likely
due to the LQR controller being linearized about level flight conditions while being commanded
to an orbit.
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Figure 4.4: Error between UAS and gimbal orientation states predicted by the differential-flatness
model and those required to align the ground target with the camera optical axis. Gimbal prediction
error does not exceed ±2.0 degrees after UAS state initialization error is overcome. Alignment η

does not exceed 1.2 degree after overcoming initialization error.
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should be noted that some misalignment between the target and the optical axis may not impact

target visibility depending on the camera field-of-view parameters. For this simulation, a camera

with a minimum field-of-view angle of 2 degrees would have maintained target visibility through

the duration of the trajectory if predicted gimbal angles were used.

4.6 Conclusion

In this paper, we presented a differential-flatness model for a generalized fixed-wing air-

craft with a two-axis gimbal camera tracking a known target. We showed how the model provides a

mapping of a UAS trajectory to both the UAS and gimbal control spaces. The predictive accuracy

and limitations of this model relative to the output of the same model tracking an inertial trajec-

tory with LQR feedback control were shown in simulation. Future work could include defining

uncertainty bounds for simplifications of the flatness model and accounting for the full visual field

of the camera in viewing the target instead of constraining the target to align with the optical axis.

Additional work in accounting for constant inertial wind and more accurate airspeed influences

on angle-of-attack in the differential flatness model could improve the predictive accuracy of the

model. Further analysis could be done to assess the impact of eliminating the angle-of-attack and

control deflection terms of the drag model. A path planning framework could also be developed

using the proposed differential-flatness model for autonomous target tracking with visualization

guarantees.
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CHAPTER 5. FLATNESS-BASED PATH PLANNING OF A GIMBALLED FIXED-
WING UAS1

5.1 Introduction

Ground target detection and observation missions have increasingly sought to utilize un-

manned aircraft systems (UAS) equipped with a downward-facing, gimballed camera system for

both autonomous and semi-autonomous missions. These observation missions have applications in

search and rescue, law enforcement, national security, border patrol, reconnaissance, and wildlife

management. When a detected target has been selected for further observation, fixed-wing aircraft

typically transition into an overhead orbit over the intended target. In many cases, maintaining

target visibility during this transitioning trajectory can be critical. Without sufficiently defined

vision-based trajectory constraints, tracked targets may escape UAS visibility long enough to evade

further detection and localization. The interaction between gimbal constraints and flight dynamics

is particularly challenging for fixed-wing UAS as opposed to multirotors due to fewer degrees of

freedom in the dynamics.

Many works have developed approaches for controlling a UAS so that vision constraints are

satisfied. In [12], a reactive control law successfully guides a fixed-wing aircraft to land on a linear

runway while maintaining runway visibility. However, the method in [12] is designed specifically

for tracking linear structures rather than generalized targets. Another approach is considered in [9]

for maintaining a moving target in the camera field-of-view (FOV) with wind disturbances by

controlling and constraining the UAS roll angle toward steady orbits. This approach is effective

for transitioning to constant orbits about stationary targets, but was not designed to ensure visibility

for gimbal angle limits commonly found on inexpensive off-the-shelf gimbals. The authors in [13]

use game theoretic and stochastic optimal control for maintaining a moving, stochastic point target

within a constrained FOV. The results of [13] show successful reactive control of a fixed-wing

1THIS WORK IS BEING SUBMITTED FOR PUBLICATION IN THE 2021 AIAA JOURNAL OF GUIDANCE,
CONTROL, AND DYNAMICS (JGCD)
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aircraft in following and maintaining line-of-sight of a non-holonomic ground vehicle; however,

the control design does not attempt to predict future trajectory points where target visibility may

be dynamically unattainable. By proving that a UAS system is differentially flat, the authors of

[14]–[20] develop frameworks for successfully planning dynamically feasible trajectories for UAS.

However, these works do not account for feasibility of gimbal states or target visibility throughout

the trajectory in their flatness models. In [32] a control law is introduced for converging to an

orbit over a target under input saturation constraints, however, input saturation constraints on a

gimbal for maintaining visibility of a target are not considered. The authors of [33]–[36] develop

various additional control laws that account for input saturation constraints, but again gimbal angle

constraints are not considered for target tracking.

The main contribution of this work is a path planning framework for a fixed-wing UAS

equipped with a gimballed camera system that ensures visibility while transitioning to an overhead

orbit. The differential-flatness model for gimballed, fixed-wing aircraft used to drive the path

parameterization under visibility constraints is summarized in Section 5.2. A simplified form of

the final bi-tangent trajectory model is geometrically derived in Section 5.3. The bi-tangent model

is extended with smoothing segments to ensure dynamic feasibility in Section 5.4. An additional

path planning framework for dynamically feasible smooth transitions between orbits is shown

in Section 5.5. A simulation study is presented in Section 5.6 that demonstrates the effectiveness

of the proposed planning frameworks in predicting and maintaining target visibility throughout the

entire trajectory. Conclusions are provided in Section 5.7.

5.2 Differential-flatness Model for Gimballed Fixed-Wing UAS

5.2.1 Mathematical notation

Coordinate frames are right-hand and denoted as F a = {ia, ja,ka} where ia, ja, and ka are

the basis vectors. The expression xc
a/b denotes a vector x of frame F a measured with respect to

frame F b expressed in frame F c. Let Rb
a ∈ SO(3) denote the rotation matrix that transforms coor-

dinates in frame F a to coordinates in frame F b. The canonical basis vectors in R3 are denoted by

e1, e2, and e3. The frames F i, F b, F g, F s and F t denote the inertial, body-fixed, gimbal, sta-

bility and target reference frames respectively. Let bxc define the skew-symmetric matrix operator
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on the generalized vector x = (x1,x2,x3)
> ∈ R3 such that

bxc=


0 −x3 x2

x3 0 −x1

−x2 x1 0

 .

5.2.2 Gimballed Fixed-wing Aircraft Model

The simplified equations of motion for a fixed-wing aircraft are given by

ṗi
b/i = vi

b/i (5.1)

v̇i
b/i = ge3 +

1
m

Ri
s

(
(T cos(α)−D(vi

b/i,ω
b
b/i))e1−L(vi

b/i,ω
b
b/i)e3

)
(5.2)

Ṙi
b = Ri

bbω
b
b/ic (5.3)

ω
b
b/i = ωc, (5.4)

where pi
b/i is the UAS position, vi

b/i is the UAS velocity, g is the acceleration due to gravity, m is

the system mass, ωb
b/i is the angular velocity of the UAS, ωc are the commanded angular rates, T

is the commanded thrust along the body ib axis, α is the angle of attack,

D(vi
b/i,ω

b
b/i) =

1
2

ρV 2
a S(CD0 +CDq

c
2Va

ω
b
b/i
>e2), (5.5)

is the drag on the aircraft along the negative ib body-fixed axis,

L(vi
b/i,ω

b
b/i) =

1
2

ρV 2
a S(CL(α)+CLq

c
2Va

ω
b
b/i
>e2), (5.6)

is the lift force of the aircraft along the negative kb body-fixed axis, where ρ is the air density,

Va =
∥∥∥vi

b/i

∥∥∥ (5.7)

is the UAS airspeed, S is the planform area of the wing, c is the mean cord width of the wing,

CD0 , CDq , and CLq are aerodynamic coefficients, and CL(α) is the lift curve of the wing, as defined
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in [31]. To focus on relevant quantities and thereby simplify the model we have assumed that the

rudder deflection, side-slip angle and deviation from the stable angle of attack α0 are relatively

small and that the drag induced by the control surfaces is negligible.

We assume that the UAS is equipped with a two-axis gimballed camera as defined in [38],

where the gimbal azimuth θaz and elevation θel angles are assumed to be commanded directly using

a rapid-response inner control loop. The objective is to image and follow a known ground target

with kinematics defined by

ṗi
t/i = vi

t/i, (5.8)

where pi
t/i is the position of the target to be tracked and vi

t/i is the target velocity.

5.2.3 Differential-flatness Model

In this section, we show that the combined UAS and gimbal system is differentially flat.

The following definition is given in [37].

Definition 1 The general nonlinear system ẋ = f (x,u), where x is the state and u is the control

input, with the output mapping z= h(x), is differentially flat with the flat output z if the components

of z are not differentially related over time, and if the state x and control inputs u can be written as

a function of the flat output and its derivatives, i.e., there exists functions g1,ge, and finite scalars

m1,m2 such that

x(t) = g1

(
z(t),

d
dt

z(t), · · · , dm1

dtm1
z(t)
)

u(t) = g2

(
z(t),

d
dt

z(t), · · · , dm2

dtm2
z(t)
)
.

Therefore, differentially flat systems admit a direct algebraic mapping from the flat outputs to the

states and control inputs. This mapping allows trajectory planning to be performed in the lower-

dimensional flat output space, given an open-loop feedforward solution to the states and control

inputs along the planned trajectory.

57



www.manaraa.com

Using the fixed-wing model proposed in Section 5.2.2, [39] shows that the UAS/gimbal

system is differentially flat with flat output given by the UAS and target positions by the following

theorem.

Theorem 3 ( [39]) If (1) there is no wind, (2) the angle-of-attack is constant and equal to α0, (3)

the side-slip angle is zero, and (4) the UAS/target line-of-sight vector is aligned with the camera

optical axis, then the aircraft defined by Eqs. (5.1) to (5.5), (5.7) and (5.8) with states and inputs

given by

x = {pi
b/i,v

i
b/i,R

i
b,ω

i
b/i} ∈ R3×R3×SO(3)×R3

u =
(

ωb>
b/i,T,θaz,θel

)>
∈ R6,

is differentially flat with flat output

z 4=
(

z>b , z>t
)>

=
(

pi>
b/i, pi>

t/i

)>
∈ R6,

where g1 and g2 are functions of zb, żb, z̈b,
...z b and zt .

By Theorem 3 we then know that a direct algebraic mapping is available for assessing the dy-

namic and visual feasibility of a fixed-wing trajectory if it can be defined up to its third positional

derivative and the inertial position of the target is known. The input space of the trajectory defined

by the differential-flatness map can then be explored and augmented to ensure maintaining target

visibility is possible over the proposed trajectory.

5.3 Simple Bi-tangent Orbit Transition

In order to plan a visually and dynamically feasible trajectory which converges into a de-

sired orbit, we proceed to develop a generalization of the classical Dubin’s path that allows for

independently variable arc radii. We will refer to these as simple bi-tangent trajectories. By defin-

ing the second arc of this simple bi-tangent path to be the desired orbit, appropriate conditions can

be calculated for the initial arc and subsequent linear segment of the path needed to converge to

the desired final orbit.
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(a) Inscribed orbits (b) Inscribed tan-
gent orbits

(c) Intersecting orbits

(d) External tangent orbits (e) External orbits

Figure 5.1: Simple bi-tangent configuration variations. In (a) there are no bi-tangent solutions, in
(b) there is only one bi-tangent solution, with (c) there are exactly two, with (d) there are three,
and in (e) there are four bi-tangent solutions.

5.3.1 Bi-tangent Line Solutions

Assuming a north-east-down (NED) inertial reference frame, we begin by solving for all

possible angles at which a bi-tangent line connects to a given initial and final orbit pair. The

number of tangent solutions to both orbits depends on the orbit sizes and relative locations as

shown in Fig. 5.1.

For each of the five configurations shown in Fig. 5.1, a different set of bi-tangent line

solutions exists. Inscribed orbits illustrated by Fig. 5.1(a) occur when the orbital centers and radii

produce the relation

‖x0− x1‖< |r1− r0| .

For inscribed orbits, it is clear that no bi-tangent line solutions can exist between the two orbits.

Inscribed tangent orbits illustrated by Fig. 5.1(b) exist when the orbital centers and radii produce

the relation

‖x0− x1‖= |r1− r0| .
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Inscribed tangent orbits have one unique outer bi-tangent line solution at the point of intersection

between the two circles, though the bi-tangent line is infinitesimally small in length. One special

case of inscribed tangent orbits occurs with concentric, equiradial orbits. In this case, there exists

an infinite number of unique outer bi-tangent line solutions for every angle of the orbit, since the

two circles intersect at every point; however, this case is trivial as it implies that an orbit has already

been acquired and no transitioning trajectory is needed. Intersecting orbits illustrated by Fig. 5.1(c)

exist when the orbital centers and radii produce the relation

|r1 + r0|> ‖x0− x1‖> |r1− r0| .

Intersecting orbits have two unique outer bi-tangent line solutions. External tangent orbits illus-

trated by Fig. 5.1(d) exist when the orbital centers and radii produce the relation

|r1 + r0|= ‖x0− x1‖> |r1− r0| .

External tangent orbits have two unique outer bi-tangent line solutions as well as a single unique

inner bi-tangent line solution at the point of intersection between the two orbits. External orbits

illustrated by Fig. 5.1(e) exist when the orbital centers and radii produce the relation

‖x0− x1‖> |r1 + r0| .

For external orbits, two unique outer bi-tangent line solutions exist as well as a two unique inner

bi-tangent line solutions.

Note that Fig. 5.1(e) has a pair of bi-tangent lines whose intersection lies between the two

circles and a pair of bi-tangent lines whose intersection lies outside of the two circles. The next

two lemmas provide expressions for these ”inner” and ”outer” bi-tangent solutions.

Lemma 2 Given two orbits of radius r0 and r1 centered at points c0 = (c00,c01)
> and c1 =

(c10,c11)
> respectively, as shown in Fig. 5.2, and let

γ̄ = arctan2(c11− c01,c10− c00) . (5.9)
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(a) Outer tangent geometric
view

(b) Outer tangent angle relations

Figure 5.2: Outer bi-tangent geometry.

be the angle of the line connect the orbit centers, and let

αo = arcsin
(

r1− r0

‖c1− c0‖

)
(5.10)

be the angle between the line intersecting the orbit centers and the line that passes through c0 and

is tangent to the circle of radius r1− r0 centered at c1. Then the angles where the outer tangent

lines intersect the orbits, as shown in Fig. 5.2, are given by

θ0,1 = θ1,1 = γ̄− π

2
−αo (5.11)

θ0,2 = θ1,2 = γ̄ +
π

2
+αo. (5.12)

Proof:

To solve for the angle ∠NOT0, defined as θ1,1, we initially solve for the angle ∠MPO,

defined as γ̄ , with Eq. (5.9). As shown in Fig. 5.2(a), we define a line PXo parallel to t0T0 that

intersects the center of the orbit centered at P and lies tangent to a sub-orbit centered at O with

radius r1− r0. The angle ∠XoPO, defined as αo, is then described by Eq. (5.10).

For determining the angle ∠NOT0, defined as θ1,1, we begin by noting that ∠MPO +

∠PON = π . Since ∠PON = ∠POT0 +∠T0ONo, with ∠POT0 =
π

2 −αo, we then have ∠T0ON =

π

2 − γ̄ +αo. We solve for the angle of interest ∠NOT0 = −∠T0ON defining θ1,1 in Eq. (5.11).

It is clear that ∠POT0 = ∠T1OP and, therefore, ∠NOT1 = 2π +∠NOT0− 2∠POT0 defining θ1,2
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(a) Inner tangent geometric view (b) Inner tangent angle relations

Figure 5.3: Inner bi-tangent geometry

in Eq. (5.12). Since ∠MPt0 and ∠NOT0 are congruent angles of similar triangles, as are ∠MPt1

and ∠NOT1, we define θ0,1 and θ0,2 by Eqs. (5.11) and (5.12).

Lemma 3 Given two orbits of radius r0 and r1 centered at points c0 = (c00,c01)
> and c1 =

(c10,c11)
> respectively, as shown in Fig. 5.3, and let γ̄ defined by Eq. (5.9) be the angle of the

line connect the orbit centers, and let

αi = arcsin
(

r1 + r0

‖c1− c0‖

)
(5.13)

be the angle between the line intersecting the orbit centers and the line that passes through c0 and

is tangent to the circle of radius r1 + r0 centered at c1. Then the angles where the inner tangent

lines intersect the orbits, as shown in Fig. 5.3, are given by

θ0,3 = γ̄− π

2
+αi (5.14)

θ0,4 = γ̄ +
π

2
−αi (5.15)

θ1,3 = γ̄ +
π

2
+αi (5.16)

θ1,4 = γ̄− π

2
−αi. (5.17)

Proof: Similar to proof of Lemma 2.
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Using Lemmas 2 and 3, we can describe bi-tangent line solutions for each of the config-

urations shown in Fig. 5.1. We proceed to derive an approach for constructing simple bi-tangent

trajectories for unmanned aircraft systems (UAS).

5.3.2 Constructing Simple Bi-tangent UAS Trajectories

For UAS trajectory planning, simple bi-tangent paths can be used to quickly define a tra-

jectory transitioning from an initial state to a final orbit over a known ground target. We proceed

to define a time-parameterized model for defining the inertial position and positional derivatives of

a bi-tangent path.

We begin by defining orbit arc trajectories generally. For a given UAS position p, course

angle χ , orbit radius r and orbit direction

λ
4
=

1, clockwise orbit

−1, counter-clockwise orbit
,

it can be shown that a general orbit arc trajectory can be defined as

porb(t, t0,p0,r,λ ,χ0,Vg)
4
= p0 +λ r


sin
(

Vg
λ r (t− t0)+χ0

)
− sin(χ0)

−cos
(

Vg
λ r (t− t0)+χ0

)
+ cos(χ0)

0

 . (5.18)

The center of the orbit tangent to the UAS velocity is also given by

co(p,χ,r,λ )
4
= p+ r


cos
(
χ +λ

π

2

)
sin
(
χ +λ

π

2

)
0

 , (5.19)

with orbit angle

θorb(χ,λ )
4
= χ−λ

π

2
. (5.20)
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It can also be shown that general linear path segments can be defined using a start position pl and

direction χl as

plin(t, t0,pl,χl,Vg)
4
= pl +Vg(t− t0)


cos(χl)

sin(χl)

0

 . (5.21)

.

The differential-flatness model described in Section 5.2 requires up to third order deriva-

tives of flat outputs. It can be shown that the kth derivative of an orbital trajectory defined by Eq. (5.18)

is

p(k)
orb(t, t0,r,λ ,χ0,Vg)

4
=

V k
g

(λ r)k−1


sin
(

Vg
λ r (t− t0)+χ0 +

kπ

2

)
−cos

(
Vg
λ r (t− t0)+χ0 +

kπ

2

)
0

 . (5.22)

It can also easily be shown that the kth derivative of a linear trajectory defined by Eq. (5.21) is

p(k)
lin (χl,Vg)

4
=


[
Vg cos(χl) , Vg sin(χl) , 0

]>
k = 1[

0, 0, 0

]>
k > 1

(5.23)

To define the full bi-tangent trajectory, we consider a UAS transitioning to a orbit of radius

r1 over a target with an inertial position pt . The orbit radius r1 is selected by the operator to be

larger than the minimum orbit radius defined using the coordinated turn model in [31] as

rmin(Vg,φmax) =
V 2

g

g tan(φmax)
, (5.24)

where φmax is the maximum allowable aircraft roll angle. Suppose a dynamically feasible initial

orbit radius r0 has been selected for the UAS. The UAS has the option of initially turning left

into a counter-clockwise orbit or right into a clockwise orbit with orbit center positions cl and

cr respectively as shown in Fig. 5.4. To parameterize the initial orbit arc, we must first select

the initial orbit direction. When considering a UAS equipped with a two-axis gimbal camera

system, the selection between a clockwise or counter-clockwise orbit ultimately rests upon the

constraints of the gimbal azimuth limits. For inexpensive, off-the-shelf gimbal solutions, it is
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Figure 5.4: Typical simple bi-tangent orbit transition options for UAS transitioning to an overhead
target orbit.

common for the azimuth axis to be actuated by a servo motor. These systems generally have hard

rotational constraints preventing them from rotating beyond approximately ±150 degrees. It then

follows that gimbal azimuth limits are encountered whenever the target of interest crosses behind

the UAS outside of the reach of the azimuth actuator. Intuitively, turning toward the direction of

the current gimbal azimuth angle results in an orbit that allows the greatest range of free rotation

before encountering azimuth limits. Assuming the target begins in the field-of-view, we then define

the initial orbit direction using the initial azimuth angle θaz,0 to be

λ0(θaz,0) =

1, if 0≤ θaz,0 < π

−1, if 0 > θaz,0 >−π

. (5.25)

Once an initial orbit direction has been selected, all possible bi-tangent exit angles for the

initial orbit can be determined using Lemmas 2 and 3. It is important, however, to distinguish

that some bi-tangent solutions may be considered invalid for a selected initial orbit direction. As

derived, Table 5.1 shows all valid exit and entry angles θex and θen respectively given an initial

orbit direction. It should be noted that the final orbit direction is determined by the selection of
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Table 5.1: Bi-tangent Exit and Entry Angles

Initial Orbit Outer Bi-tangent Inner Bi-tangent
Direction (θex/θen) (θex/θen)

λ0 = 1 (θ0,1/θ1,1) (θ0,3/θ1,3)
λ0 =−1 (θ0,2/θ1,2) (θ0,4/θ1,4)

either inner or outer bi-tangent paths to be

λ1 =

λ0, outer bi-tangent

−λ0, inner bi-tangent
. (5.26)

To finalize the initial orbit arc trajectory, the duration t f ,o of the orbit trajectory defined

in Eq. (5.18) must be determined using the arc length of the path. It can be shown for an orbit

direction, exiting orbit angle and initial orbit angle θinit that the arc length of the initial orbit path

is given by θarc = λ 〈2π +λ0(θex−θinit)〉 where θinit,θex ∈ [−π,π] and

〈y〉 4= y mod 2π.

The duration of the initial orbit arc is then

τ f ,o =
r0

Vg
〈2π +λ (θex−θinit)〉

where

θinit = θorb(χ0,λ0).

producing the initial orbit completion time

t f ,o = t0 + τ f ,o

To parameterize the linear segment of the simple bi-tangent path, we use the initial orbit

center

ci = co(p0,χ0,r0,λ0)
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to calculate the starting position of the linear segment as

pls = ci + r0


cos(θex)

sin(θex)

0

 . (5.27)

Since the linear portion of the simple bi-tangent path is tangent to the initial orbit, its direction is

defined as

χl = θex +λ0
π

2
. (5.28)

The end point of the linear path is calculated similarly as

ple = p̄t + r1


cos(θen)

sin(θen)

0

 , (5.29)

where p̄t is the target position projected onto the north-east plane at the UAS altitude given by

p̄t = pt + e3(p>0 −p>t )e3.

The linear segment duration is then

τ f ,l =
‖ple−pls‖

Vg

with a total trajectory time

t f = t f ,o + τ f ,l.

We then define the full time-parameterized inertial position trajectory as

p(t) =


porb(t, t0,p0,r0,λ0,χ0,Vg), if t0 ≤ t ≤ t f ,o

plin(t, t f ,o,χl,Vg), if t f ,o < t ≤ t f

porb(t, t f ,ple,r1,λ1,θen−λ
π

2 ,Vg), if t > t f

(5.30)
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with derivatives

p(k)(t) =


p(k)

orb(t, t0,r0,λ0,χ0,Vg), if t0 ≤ t ≤ t f ,o

p(k)
lin (χl,Vg), if t f ,o < t ≤ t f

p(k)
orb(t, t f ,r1,λ1,θen−λ1

π

2 ,Vg), if t > t f

. (5.31)

5.4 Bi-tangent Trajectory Smoothing

The simple bi-tangent paths introduced in Section 5.3 are not dynamically feasible because

they assume instantaneous changes in roll angle at the transitions between the orbits and straight-

line segment. The purpose of his section is to define a smoothed variation of the simple bi-tangent

path defined in Section 5.3. This is done by first defining a model for smooth lateral transition

segments in Section 5.4.1. These segments are then inserted at transition points of the simple bi-

tangent trajectory to eliminate roll angle discontinuities. The full smoothed bi-tangent trajectory

and its derivatives are then defined for use with the differential-flatness model as described in

Section 5.4.2. Initial orbit arc length and straight-line length parameters are then optimally selected

for the smooth bi-tangent trajectory to ensure the final orbit is centered over the desired target. The

initial orbit radius is then selected to ensure gimbal angles required to view the target can be

reached throughout the trajectory as described in Section 5.4.3.

To derive the smoothed transition segment trajectory, we use the simplified kinematic

model

ṗ =


Vg cos χ cosγ

Vg sin χ cosγ

−sinγ

 (5.32)

χ̇ =
g

Vg
tanφ (5.33)

φ̇ = u1 (5.34)

γ̇ = u2 (5.35)
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where χ , γ , and φ represent vehicle course angle, flight path angle, and roll angle respectively with

u1 and u2 being the desired control inputs. For consistency with the differential-flatness model

in Section 5.2, it is assumed that there is no wind.

5.4.1 Smooth Lateral Transition Trajectory Segment

We begin by defining a discretely-sampled trajectory model for the lateral transition tra-

jectory segments used to smooth a bi-tangent path. The dynamic discontinuities exist because we

assume that the aircraft can instantaneously transition between the roll angles required for orbits

and level-flight. To eliminate these discontinuities, we define a smooth transition trajectory by

assuming a constant roll rate between adjacent path segments such that u1 =±ω̄φ , where±ω̄φ is a

constant roll rate during the transition. In this section, we assume that γ̇ = γ = 0 to maintain level

flight during lateral transition to get

ṗlat(Vg,χ) =


Vg cos χ

Vg sin χ

0

 (5.36)

χ̇(Vg,φ) =
g

Vg
tanφ (5.37)

φ̇(ω̄φ ) = ω̄φ (5.38)

with derivatives along the trajectory given by

p̈lat(χ,φ) =


−Vgχ̇ sin χ

Vgχ̇ cos χ

0

=


−gsin χ tanφ

gcos χ tanφ

0

 (5.39)

...p lat(Vg,χ,φ , ω̄φ ) =


−Vg(χ̇

2 cos χ + χ̈ sin χ)

Vg(−χ̇2 sin χ + χ̈ cos χ)

0

=


−g2

Vg
cos χ tan2 φ −gω̄φ sin χ sec2 φ

−g2

Vg
sin χ tan2 φ +gω̄φ cos χ sec2 φ

0


(5.40)
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where we have used the fact that χ̈ = g
Vg

ω̄φ sec2 φ . Note that the trajectory and its first three

derivatives at time t can be expressed in terms of the states and the input at time t.

The trajectory produced by this set of differential equations resembles that of a clothoid

trajectory as shown in Fig. 5.5 which does not have an analytical solution but must be computed

numerically. Let the full-state, lateral transition trajectory at discrete time intervals along the seg-

Figure 5.5: Inertial position of UAS obtained from RK45 propagation of the system described
by Eqs. (5.36) to (5.38) from an an initial roll angle of −90 degrees to 90 degrees with a relatively
small roll rate command. Note its resemblance to that of a classical clothoid curve.

ment be defined as

xlat =


p1 p2 . . . pmlat

χ1 χ2 . . . χmlat

φ1 φ2 . . . φmlat


where pk, χk, and φk are the position, course, and roll angle at step k along the segment, and where

[p>k ,χk,φk]
> = fRK45([p>k−1,χk−1,φk−1]

>,Vg, ω̄φ ,Ts)

where fRK45 defines the RK45 propagation [40] of the system defined in Eqs. (5.36) to (5.38) over

a small time step Ts with input ±ω̄φ . We define the time tlat needed to complete the transition

trajectory as

tlat =
φmlat−φ1

ω̄φ
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where φmlat is the desired final roll angle. Using the coordinated turn model in [31], the roll angle

for an orbit or radius r is given by

φorb(λ ,Vg,r,γ)
4
= arctan

(
λ

V 2
g cos(γ)

gr

)
. (5.41)

The final roll angle of the transition path is then

φmlat = φorb(λ ,Vg,r,0),

with the number of discrete propagation steps mlat needed to define the desired transition trajectory

calculated as

mlat =

⌈
tlat

Ts

⌉
, (5.42)

where the notation dxe is the integer ceiling operation on x. A lateral transition trajectory can then

be defined using Algorithm 3, where the notation x[:, j] represents the state of the trajectory at time

index j.

Algorithm 3 Lateral Transition Segment Trajectory
1: procedure LATERAL TRANSITION(p0,χ0,φ0,Vg, ω̄φ ,Ts,φ f )

2: xlat[:,0]← [p>0 ,χ0,φ0]
>

3: Calculate mlat =
⌈
(φ f−φ0)

ω̄φ Ts

⌉
4: i← 1

5: while i <= mlat do

6: xlat[:, i]← fRK45(xlat[:, i−1],Vg, ω̄φ ,Ts)

7: i← i+1

8: end while

9: return xlat, mlat

10: end procedure

The derivatives of the the trajectory can be computed using equations Eqs. (5.36), (5.39)

and (5.40).
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5.4.2 Smoothed Bi-tangent Construction

A smoothed trajectory is constructed by inserting transition segments defined in the previ-

ous section, between the straight-line and circle segments of the simple bi-tangent trajectory. A

simple bi-tangent trajectory is composed of (i) an initial circular arc, (ii) a straight line, and (iii)

a final circular arc. Accordingly, with reference to Figure 5.6, a smoothed bi-tangent trajectory

will consist of six segments: (I) a transition to enter the first orbit, (II) a circular arc along the

initial orbit, (III) a transition from the first orbit to a straight-line segment, (IV) a straight-line seg-

ment, (V) a transition from the straight-line segment to the final orbit, and (VI) a final orbit. In

Figure 5.6: Bi-tangent trajectory with transition smoothing elements. Transition segment rates
shown were selected to be very slow to exaggerate smoothing trajectory characteristics.

the following we parameterize each of these segments in order to explicitly define the smoothed

bi-tangent trajectory. We will assume outer bi-tangent paths are used in the derivation since inner

bi-tangents are often undefined at closer orbits, though the derivation can easily be extended to

inner bi-tangent solutions as well.

Assuming initial aircraft states p0, χ0, and φ0, we calculate the transition to enter the first

orbit (i.e. segment I from Fig. 5.6) using Algorithm 3 as

[xlat,I,mlat,I]← Lateral Transition(p0,χ0,φ0,Vg,λ0ω̄φ ,Ts,φI) (5.43)
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where ω̄φ is a constant roll rate and φI = φorb(λ0,Vg,r0,0) is the roll angle of the initial orbit

calculated using Eq. (5.41). The endpoint states of segment I [p>mlat,I
,χmlat,I ,φmlat,I]

> are reached at

time t1 = t0 +mlat,ITs.

The arc along the first orbit (i.e. segment II from Fig. 5.6) can simply be parameterized

using Eq. (5.18). Assuming a given orbit arc angle dθ , segment II is completed at time t2 = t1+
dθ r0
Vg

with endpoint states

pII = porb(t2, t1,pmlat,I
,r0,λ0,χmlat,I ,Vg)

χII = λ0dθ +χmlat,I

φII = φmlat,I

We define the transition from the first orbit to a straight-line segment (i.e. segment III

from Fig. 5.6) as

[xlat,III,mlat,III]← Lateral Transition(pII,χII,φII,Vg,−λ0ω̄φ ,Ts,0) (5.44)

with endpoint states [p>mlat,III
,χmlat,III,φmlat,III]

> reached at time t3 = t2 +mlat,IIITs.

The straight-line segment (i.e. segment IV from Fig. 5.6) can be parameterized using Eq. (5.21).

Given a straight-line path length `mag, segment IV is completed at t4 = t3+
`mag
Vg

with endpoint states

pIV = plin(t4, t3,χmlat,III,Vg)

χIV = χmlat,III

φIV = 0

We then define the transition from the straight-line segment to the final orbit (i.e. segment

V from Fig. 5.6) as

[xlat,V,mlat,V]← Lateral Transition(pIV,χIV,0,Vg,λ1ω̄φ ,Ts,φV ) (5.45)

where φV = φorb(λ1,Vg,r1,0) is the roll angle of the final orbit calculated using Eq. (5.41) with

endpoint states [p>mlat,V
,χmlat,V ,φmlat,V]

> reached at time t5 = t4 +mlat,VTs.
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We define the discrete-time sampling operator

Sample( f (t), t0, t f ,Ts) =
[

f (0) f (Ts) f (2Ts) . . . f (kTs)
]
, (5.46)

where t0 is the start time, t f is the end time, f (t) is the continuous-time function to be sampled at

a period Ts along t, and

k =
⌊

t f − t0
Ts

⌋
is the number of sample points with the notation bxc being the integer floor operation on x. Note

that if f (t) in Eq. (5.46) is not a function of time, then the result is simply a vector of repeated

values or a matrix of repeated column vectors.

We then define the smooth bi-tangent as a discrete inertial position trajectory with course

and roll angle endpoint states using Algorithm 4.

The first three derivatives of the trajectory points from Algorithm 4 can be obtained from

Eqs. (5.22), (5.23), (5.36), (5.39) and (5.40) for use with the differential-flatness map. The endpoint

states given by Algorithm 4 can be used to initialize the final orbit trajectory using Eqs. (5.18)

and (5.22). Intermediate trajectory point states and derivatives can be approximated by linear

interpolation.

5.4.3 Smoothed Bi-tangent Selection for Target Observation

The smoothed bi-tangent trajectories introduced by Algorithm 4 do not constrain the final

orbit to be over a desired target. The parameterization for smoothed bi-tangent trajectories was

obtained for an arbitrarily selected initial orbit radius, initial orbit arc length, and straight-line path

length. The values of `mag and dθ can be selected to align the final orbit over the desired target.

Because segments I, III, and V are approximated numerically, these path parameters are optimally

selected to minimize the north-east distance between the smoothed bi-tangent final orbit center and

the target over which to orbit. The final orbit center is calculated using Eq. (5.19) as

cs,1 = co(pmlat,V
,χmlat,V,r1,λ1), (5.47)

where pmlat,V
and χmlat,V are the outputs from Algorithm 4.
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Algorithm 4 Discrete Smooth Bi-tangent Trajectory

1: procedure SMOOTH BI-TANGENT(p0,χ0,φ0,Vg,λ0,r0,λ1,r1, ω̄φ ,Ts, t0,dθ , `mag)

. Segment I

2: φI ← arctan
(

λ0
V 2

g
gr0

)
3:

[[
p>lat,I,χlat,I,φlat,I

]>
,mlat,I

]
← Lateral Transition(p0,χ0,φ0,Vg,λ0ω̄φ ,Ts,φI)

. Segment II

4: t1← t0 +mlat,ITs

5: t2← t1 +
dθ r0
Vg

6: plat,II← Sample
(
porb(t, t1,plat,I[:,mlat,I],r0,λ0,χlat,I[:,mlat,I],Vg), t1, t2,Ts

)
7: pII← porb(t2, t1,plat,I[:,mlat,I],r0,λ0,χlat,I[:,mlat,I],Vg)

8: χII← λ0dθ +χlat,I[:,mlat,I]

9: φII← φI

. Segment III

10:
[[

p>lat,III,χlat,III,φlat,III
]>

,mlat,III

]
← Lateral Transition(pII,χII,φII,Vg,−λ0ω̄φ ,Ts,0)

. Segment IV

11: t3← t2 +mlat,IIITs

12: t4← t3 +
`mag
Vg

13: plat,IV← Sample(plin(t, t3,χlat,III[:,mlat,III],Vg), t3, t4,Ts)

14: pIV← plin(t4, t3,χlat,III[:,mlat,III],Vg)

15: χIV← χlat,III[:,mlat,III]

16: φV ← arctan
(

λ0
V 2

g
gr1

)
. Segment V

17:
[[

p>lat,V,χlat,V,φlat,V
]>

,mlat,V

]
← Lateral Transition(pIV,χIV,0,Vg,λ1ω̄φ ,Ts,φV )

. Combine Segments

18: psbt←
[
plat,I | plat,II | plat,III | plat,IV | plat,V

]
19: return psbt, χlat,V[:,mlat,V], φV

20: end procedure
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We define the cost function to minimize the lateral distance between the target and final

orbit center

Js = ‖I2(pt− cs,1)‖ ,

where I2 = diag(1,1,0) which can be used to and define the nonlinear optimization problem

min
`mag,dθ

Js (5.48)

s.t.

`mag ≥ 0

0≤ dθ < 2π

This minimization can be solved using any optimization methodology that doesn’t require an

analytical Jacobian. In this paper, we used the sequential least-squares quadratic programming

(SLSQP) method [41]. Due to the nonlinear nature of this optimization problem, it is important to

seed the optimization near a known solution point to ensure convergence. For high roll rate com-

mands, transition trajectories become infinitesimally small until the smoothed bi-tangent solution

converges to the simple bi-tangent solution. This makes the initial arc length and straight-line path

length parameters of the simple bi-tangent solution good candidates for seeding the optimization.

The seed for the simple bi-tangent straight-line path length can be calculated from Eqs. (5.27)

and (5.29) as

`mag,seed = ‖ple−pls‖ (5.49)

with the seed for the arc angle calculated as

dθ ,seed = λ0 〈2π +λ0(θex−θinit)〉 . (5.50)

An example smoothed bi-tangent trajectory obtained using this seeding approach for a generic set

of initial UAS states, target states, and smoothing conditions is shown in Fig. 5.7. It is clear that

for rapid roll rates, the smoothed bi-tangent solution is reasonably close to the simple bi-tangent

solution. Since the smoothed bi-tangent trajectory was defined using appropriately selected roll

rate commands, the smoothed bi-tangent path is dynamically feasible.
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Figure 5.7: Simple bi-tangent trajectory overlaid with the smoothed bi-tangent solution. The sim-
ple bi-tangent solution is shown by dashed blue lines with the smoothed solution displayed in
red. The cyan triangle marker indicates the UAS initial position with an arrow indicating its initial
heading. The blue X marker indicates the known target over which a desired orbit is to be obtained.

Because the smooth transition segments are obtained numerically by discrete model prop-

agation, computation of the segment can become computationally expensive when very small time

steps are used to improve model accuracy. This calculation becomes far more expensive when the

model is recalculated within an optimization loop as described above. It is possible to compute the

transition path offline for significant computational performance gains as shown in Appendix A.

We proceed to consider parameter selection for ensuring visual feasibility of the observed

target. The initial orbit radius can be selected to minimize path length while ensuring feasibility of

gimbal angles required to align the target with the optical axis. This is done by passing discretely-

sampled points along the trajectory through the differential-flatness map and ensuring that no

gimbal inputs surpass the reachable bounds of the system. Discretely-sampled points from the

smooth bi-tangent trajectory and their derivatives obtained from Algorithm 4 are passed through

the differential-flatness map to obtain the flat input set Ulat. To ensure visual feasibility, the initial

orbit radius is optimally selected to be minimized while producing a smooth bi-tangent solution

with flat inputs on the gimbal that never surpass saturation limits. The values of `mag and dθ are

optimally selected at each iteration to align the final orbit over the target. This optimization is
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seeded by the linear magnitude and arc angle of the simple bi-tangent solution. The full process

for defining a smooth bi-tangent transition trajectory given initial UAS states and the position of a

target over which to orbit is given by Algorithm 5.

Algorithm 5 as defined uses a simple line search to identify a small feasible initial orbit

radius for the bi-tangent trajectory; however, the minimum initial orbit radius could be found using

other optimization techniques such as a bisection search [42]. We proceed to identify conditions

that guarantee the existence of a dynamically and visually feasible smooth bi-tangent solution.

Assuming no azimuth gimbal angle can rotate freely, the most significant cause of visual

infeasibility for gimballed fixed-wing UAS occurs when aggressive roll angles at large distances

from the observed target cause the gimbal elevation angle to saturate at its lower bound as illus-

trated by Fig. 5.8.

Figure 5.8: Elevation angle saturation resulting in an inability to align a target at pt with the
optical axis due to an aggressive roll angle at a large distance from the intended target. Assuming a
minimum elevation angle of 0 degrees, this results in angle to the optical axis at elevation saturation
being equal to the roll angle φ of the aircraft. Note that target alignment with the optical axis
becomes possible for the case depicted only as the aircraft moves closer to the target or as the roll
angle becomes smaller.

The following lemma defines sufficient conditions on the existence of a smooth bi-tangent

trajectory with no elevation angle saturation.
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Algorithm 5 Smooth Bi-tangent Planner
1: procedure SMOOTH BI-TANGENT PLANNER(p0,χ0,φ0,Vg,θaz,0,pt)

2: Define the minimum roll rate magnitude ω̄φ

3: Define the maximum roll angle φmax

4: Calculate the minimum orbit radius rmin(Vg,φmax) with Eq. (5.24)

5: Define initial orbit radius search step rstep

6: Define gimbal saturation limits θel,min,θel,max,θaz,min,θaz,max

7: Calculate λ0(θaz,0) using Eq. (5.25)

8: Select λ1 using Eq. (5.26)

9: Select final observation orbit radius r1 ≥ rmin

10: Select Ts << 1 (e.g. 0.01)

11: t0← 0

12: r0← rmin

13: Θel←{}

14: Θaz←{}

15: while θel,min ≤Θel ≤ θel,max and θaz,min ≤Θaz ≤ θaz,max do

16: `mag← `mag,seed from Eq. (5.49)

17: dθ ← dθ ,seed from Eq. (5.50)

18: Solve for optimal `mag,opt and dθ ,opt to align over target for current r0 using Eq. (5.48)

19: ptraj, χ f , φ f ← Smooth Bi-tangent(p0,χ0,φ0,Vg,λ0,r0,λ1,r1, ω̄φ ,Ts, t0,dθ ,opt, `mag,opt)

20: Calculate ṗtraj, p̈traj, and p(3)
traj using Eqs. (5.22), (5.23), (5.36), (5.39) and (5.40)

21: Calculate sampled gimbal inputs Θel,Θaz using flatness proof in [39]

22: r0← r0 + rstep

23: end while

24: return ptraj, ṗtraj, p̈traj,
...p traj, χ f , φ f

25: end procedure

Lemma 4 Given a gimballed UAS with inertial position p, ground speed Vg and initial roll angle

φ0 observing a target at a lateral north-east plane distance of p̄t and minimum allowable elevation

angle θel,min. Assuming a maximum roll rate ω̄φ , a smooth bi-tangent solution without elevation
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angle saturation exists if there is a solution r0,min to

tan−1

 −p>e3√
r2

0,min +(Vg
φ f−φ0

ω̄φ
+ p̄t)2 + r0,min

−θel,min− tan−1

(
V 2

g

r0,ming

)
= 0. (5.51)

where g is the acceleration due to gravity. The solution r0,min also defines a lower bound on the

initial orbit radius for maintaining gimbal elevation feasibility.

Proof: As illustrated by Fig. 5.8, saturation of the elevation angle while attempting to align a target

with the optical axis is caused by aircraft roll angles at large lateral distances from the target. We

produce a conservative estimate of the most distant roll position by assuming that the aircraft flies

directly away from the target for the duration of the initial transition segment and then performs

the initial orbit turn to return toward the intended final orbit. It is during the initial orbit turn that

the UAS encounters its most distant position from the target where the roll angle is maximized

as shown in Fig. 5.9. The initial smoothing segment of the proposed smooth bi-tangent model is

Figure 5.9: Conservative estimate model for farthest possible smooth bi-tangent trajectory posi-
tion with greatest roll angle corresponding to the most likely location for gimbal elevation angle
saturation. The star represents a potential target over which the UAS intends to orbit and the X
represents the point on the trajectory where elevation angle saturation is most likely to occur.
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approximated as a straight-line away from the intended target at nominal velocity for the duration

of the transition. Since the true transition segment has continuously increasing curvature, it will

remain at a closer proximity relative to this estimate. The aircraft then enters the initial orbit at the

proposed radius and subsequently returns toward the target to enter the final orbit. As illustrated

by Fig. 5.9, the most distant position where the roll angle is maximized will occur at the point of

the initial orbit segment that intersects the line defined between the intended target and initial orbit

center. The largest possible lateral distance between the target and the UAS trajectory is then

`max =
√

r2
0 +(Vg∆t,trans + p̄t)2 + r0

where p̄t is the initial lateral distance from the target and ∆t,trans is the time required to execute the

initial smooth bi-tangent transition segment calculated as

∆t,trans =
φ f −φ0

ω̄φ

with φ f = tan−1
(

V 2
g

r0g

)
being the roll angle for executing the initial orbit.

For a given initial orbit radius, alignment between the target and optical axis is possible if

the roll angle φ f satisfies phi f < φmax, where φmax is the maximum allowable roll angle resulting

in alignment of the target with the camera optical axis achieved by the smallest possible gimbal

elevation angle θel,min, where

φmax = tan−1
(

h
`max

)
−θel,min.

A conservative estimate of the minimum allowable initial orbit radius to sufficiently ensure no

gimbal elevation saturation occurs is then the solution to φmax = φ f , which is Eq. (5.51).

Due to the complicated interactions between visual boundaries produced by gimbal az-

imuth angle constraints and the lateral transition segments of the smoothed bi-tangent trajectory,

sufficient conditions for preventing azimuth angle saturation become difficult to define and are

therefore not developed in this work for brevity. Without conditions of sufficiency for azimuth-

safe solutions, it is recommended to solve the proposed bi-tangent optimization offline to ensure
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the optimization converges to a solution that meets all defined visual feasibility constraints. Es-

pecially in search and observation applications with fixed-wing UAS, it is common to execute a

search in a constant configuration (e.g. constant velocity level flight with set gimbal angle offsets)

making related applications good candidates for offline solution generation.

5.5 Smoothed Altitude Transition Trajectories

Once a final orbit has been acquired over a target, it may be necessary to transition to a

different altitude for better target visibility or aircraft safety. The purpose of this section is to define

feasible time-parameterized trajectories for performing this altitude transition. We first derive the

positional states of a generic spiral trajectory between orbits of differing altitudes. To smooth

flight path angle discontinuities at the beginning and end of the spiral model, transition trajectory

segments for flight path angle are defined and then injected into the original spiral trajectory to

provide a smooth transition path between altitudes. The flight path angle of the spiral segment is

then optimally selected to ensure both dynamic and visual feasibility conditions are maintained

throughout the trajectory.

5.5.1 Spiral Altitude Transitions

We begin by defining a simple approach for transitioning between two altitudes by adjust-

ing the altitude linearly over time. This is equivalent to maintaining a constant, non-zero flight

path angle γc. Performing this during a lateral orbit trajectory results in a spiral path. This spiral

can be defined by first solving for the course angle trajectory by integrating Eq. (5.33) to produce

χsp(t, t0,χ0,φ0,Vg) = χ0 +
g

Vg
tan(φ0)(t− t0).

The initial roll angle φ0 = φorb(λ1,Vg,r1,γc) is found using Eq. (5.41), where γc is the desired

transitioning flight path angle. The positional trajectory is then defined as

psp(t, t0,p0,φ0,χ0,γc,Vg) = p0 +


V 2

g
g

cos(γc)
tan(φ)

(
sin( g

Vg
tan(φ)(t− t0)+χ0)− sin(χ0)

)
−V 2

g
g

cos(γc)
tan(φ)

(
cos( g

Vg
tan(φ)(t− t0)+χ0)− cos(χ0)

)
−Vg sin(γc)(t− t0)

 (5.52)
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with derivatives

ṗsp(t, t0,p0,φ0,χ0,γc,Vg) =


Vg cos(γc)cos(χ0 +

g
Vg

tan(φ)(t− t0))

Vg cos(γc)sin(χ0 +
g

Vg
tan(φ)(t− t0))

−Vg sin(γc)

 (5.53)

p̈sp(t, t0,p0,φ0,χ0,γc,Vg) =


−gcos(γc)sin(χ0 +

g
Vg

tan(φ)(t− t0)) tan(φ)

gcos(γc)cos(χ0 +
g

Vg
tan(φ)(t− t0)) tan(φ)

0

 (5.54)

...p sp(t, t0,p0,φ0,χ0,γc,Vg) =


−g2

Vg
cos(γc)cos(χ0 +

g
Vg

tan(φ)(t− t0)) tan2(φ)

−g2

Vg
cos(γc)sin(χ0 +

g
Vg

tan(φ)(t− t0)) tan2(φ)

0

 . (5.55)

As with the lateral simple bi-tangent trajectory model, this approach produces dynamically

infeasible discontinuities in the aircraft flight path angle at the beginning and end of the spiral.

5.5.2 Flight Path Angle Transition Trajectories

To eliminate flight path angle discontinuities at the beginning and end of the simple spiral

trajectory, we proceed to define flight path angle transition trajectories which will be used to create

a smooth altitude transition trajectory. Using Eqs. (5.32) to (5.35) and assuming a constant flight

path angle rate γ̇ = ω̄γ , we define a longitudinal transition smoothing trajectory by commanding a

constant flight path angle rate ω̄γ . Using the coordinated turn definition, we calculate the roll rate

needed to maintain a constant orbit radius during an altitude transition segment to be

φ̇ =− tan(γ) tan(φ)cos2(φ)γ̇.

Under these assumptions, we have the system

ṗlon(Vg,χ,γ) =


Vg cos χ cosγ

Vg sin χ cosγ

−Vg sinγ

 (5.56)

83



www.manaraa.com

χ̇(Vg,φ) =
g

Vg
tanφ (5.57)

φ̇(γ,φ) =− tan(γ) tan(φ)cos2(φ)ω̄γ (5.58)

γ̇(ω̄γ) = ω̄γ (5.59)

with derivatives defined as

p̈lon(Vg,χ,γ,φ , ω̄γ) =


−Vg(sin(χ)cos(γ)χ̇ + cos(χ)sin(γ)ω̄γ)

Vg(cos(χ)cos(γ)χ̇− sin(χ)sin(γ)ω̄γ)

−Vg cos(γ)ω̄γ

 (5.60)

...p lon(Vg,χ,γ,φ , ω̄γ) =


−Vg(cos(χ)cos(γ)(χ̇2 + ω̄2

γ )−2sin(χ)sin(γ)χ̇ω̄γ + sin(χ)cos(γ)χ̈)

Vg(−sin(χ)cos(γ)(χ̇2 + ω̄2
γ )−2cos(χ)sin(γ)χ̇ω̄γ + cos(χ)cos(γ)χ̈)

Vg(sin(γ)ω̄2
γ )


(5.61)

where

χ̈(Vg,γ,φ , ω̄γ) =
g

Vg
sec2(φ)φ̇

As with the lateral transition segments, we approximate the longitudinal transition trajectory at

discrete time steps. Let xlon represent the full-state longitudinal transition trajectory defined as

xlon =


p1 p2 . . . pmlon

χ1 χ2 . . . χmlon

φ1 φ2 . . . φmlon

γ1 γ2 . . . γmlon


where γk is the flight path angle at step k along the segment and

[p>k ,χk,φk,γk]
> = gRK45([p>k−1,χk−1,φk−1,γk−1]

>,Vg, ω̄γ ,Ts),
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where gRK45 defines the RK45 propagation of the system defined in Eqs. (5.56) to (5.59) over a

small time step Ts. We define the time tlon needed to complete the transition trajectory as

tlon =
γmlon− γ1

ω̄γ

,

where γmlon is the desired final flight path angle. The number of discrete propagation steps mlon

needed to define the desired transition trajectory is then

mlon =

⌈
tlon

Ts

⌉
. (5.62)

A longitudinal transition trajectory can then be defined using Algorithm 6.

Algorithm 6 Longitudinal Transition Segment Trajectory
1: procedure LONGITUDINAL TRANSITION(p0,χ0,φ0,γ0,Vg, ω̄γ ,Ts,γ f )

2: xlon[:,0]← [p>0 ,χ0,φ0,γ0]
>

3: Calculate mlon =
⌈
(γ f−γ0)

ω̄γ Ts

⌉
4: i← 1

5: while i <= mlon do

6: xlon[:, i]← gRK45(xlon[:, i−1],Vg, ω̄γ ,Ts)

7: i← i+1

8: end while

9: return xlon, mlon

10: end procedure

The derivatives of the the trajectory can be computed using Eqs. (5.56), (5.60) and (5.61).

With the longitudinal transition trajectory segment defined, we proceed to define a framework for

smoothly transitioning between orbit altitudes.

85



www.manaraa.com

5.5.3 Longitudinal Trajectory Smoothing

A smoothed longitudinal transition trajectory is constructed by inserting transition seg-

ments between the orbits and spiral descent segments of the simple spiral transition. Accordingly,

with reference to Fig. 5.10, a smoothed altitude transition will consist of four segments: (Ia) a

transition to the spiral, (IIa) a spiral, (IIIa) a transition from the spiral to the final orbit, and (IVa)

a final orbit. We continue to parameterize each of these segments in order to explicitly define the

Figure 5.10: Inertial position of generic smoothed altitude transition trajectory. The trajectory
was obtained using a relatively slow flight path angle rate with a steep spiral flight path angle to
exaggerate path characteristics.

smoothed altitude transition trajectory.

We first define the initial longitudinal transition direction toward the desired spiral flight

path angle γc from the starting flight path angle γ0 as

λγ1 = sign(γc− γ0).
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We define the transition trajectory between the initial orbit altitude and the spiral path segment (i.e.

segment Ia from Fig. 5.10) using Algorithm 6 as

[xlon,Ia,mlon,I]← Longitudinal Transition(p0,χ0,φ0,γ0,λγ1ω̄γ ,Ts,γc),

where ω̄γ is a constant flight path angle rate and φ0 = φorb(λ1,Vg,r1,0) is the roll angle of the initial

orbit calculated using Eq. (5.41). The endpoint states of segment Ia [p>mlon,I
,χmlon,I ,φmlon,I,γmlon,I ]

>

are reached at time t1a = t0a +mlon,ITs where t0a is the start time of the altitude transition.

The spiral path segment (i.e. segment IIa from Fig. 5.10) can be parameterized by first

determining the duration δt,sp of the simple spiral trajectory segment to identify the initial states of

segment IIIa needed to level off at the desired final altitude. We calculate the difference in the third

NED positional element produced by segment IIIa by integrating the third positional component

over the time needed to return to level flight from the transitioning flight path angle as

δD,f =
∫ t f ,a

0
−Vg sin(γ(t))dt,

where t f ,a is the time needed to transition between the flight path angle of segment IIa and level

flight given by

t f ,a =
−γc

ω̄γ

.

We then conclude

δD,f =
Vg

ω̄γ

(cos(γc)−1) .

Given a desired final inertial down position pD,des, we can then calculate the change in inertial

down position δD,sp required by segment IIa as

δD,sp = p>mlon,I
e3 +δD,f− pD,des (5.63)

The duration of the spiral trajectory can then be found by setting the third element of Eq. (5.52)

equal to Eq. (5.63) as

δt,sp =−
δD,sp

Vg sin(γc)
.
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The endpoint states of segment IIa are then

pIIa
= pmlon,I

+


V 2

g
g

cos(γc)
tan(φmlon,I)

(
sin( g

Vg
tan(φmlon,I)δt,sp +χ0)− sin(χ0)

)
−V 2

g
g

cos(γc)
tan(φmlon,I)

(
cos( g

Vg
tan(φmlon,I)δt,sp +χ0)− cos(χ0)

)
−Vg sin(γc)δt,sp


χIIa = χmlon,I +

g
Vg

tan(φmlon,I)δt,sp

φIIa = φmlon,I

γIIa = γmlon,I,

which are reached at time t2a = t1a +δt,sp.

The transition from the spiral path to the final orbit (i.e. segment IIIa from Fig. 5.10) is

parameterized by first defining the final transitioning flight path angle direction to be

λγ2 = sign(−γc).

Similar to segment Ia, we then define segment IIIa to be

[xlon,IIIa,mlon,IIIa]← Longitudinal Transition(pIIa
,χIIa,φIIa,γIIa,λγ2ω̄γ ,Ts,0)

with endpoint states [p>mlon,IIIa
,χmlon,IIIa,φmlon,IIIa ,γmlon,IIIa]

> reached at time t3a = t2a +mlon,2Ts. The

final orbit (i.e. segment IVa from Fig. 5.10) is parameterized using Eq. (5.18) with these endpoint

states.

We then define the smooth altitude transition as a discrete inertial position trajectory with

course and roll angle endpoint states using Algorithm 7.

The first three derivatives of the trajectory points from Algorithm 7 can be obtained from

Eqs. (5.53) to (5.56), (5.60) and (5.61) for use with the differential-flatness map. The endpoint

states given by Algorithm 7 can be used to initialize the final orbit trajectory using Eqs. (5.18)

and (5.22). Intermediate trajectory point states and derivatives can again be approximated by linear

interpolation.
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Algorithm 7 Discrete Smooth Altitude Transition Trajectory
1: procedure SMOOTH ALTITUDE TRANSITION(p0,χ0,φ0,γ0,Vg,γc, ω̄γ ,Ts, t0a, pD,des)

. Segment I

2: λγ1← sign(γc− γ0)

3:
[[

p>lon,I,χlon,I,φlon,I,γlon,I
]>

,mlon,I

]
← Longitudinal Transition(p0,χ0,φ0,γ0,λγ1ω̄γ ,Ts,γc)

. Segment II

4: t1a← t0a +mlon,ITs

5: δD,f←
Vg
ω̄γ

(cos(γc)−1)

6: δD,sp← p>mlon,I
e3 +δD,f− pD,des

7: δt,sp←−
δD,sp

Vg sin(γc)

8: t2a← t1a +δt,sp

9: plon,II← Sample
(
psp(t, t1a,plon,I[:,mlon,I],φlon,I[:,mlon,I],χlon,I[:,mlon,I],γc,Vg), t1a, t2a,Ts

)
10: pIIa

← psp(t2a, t1a,plon,I[:,mlon,I],φlon,I[:,mlon,I],χlon,I[:,mlon,I],γc,Vg)

11: χIIa ← χlon,I[:,mlon,I]+
g

Vg
tan(φlon,I[:,mlon,I])δt,sp

12: φIIa ← φIa

. Segment III

13: λγ2← sign(−γc)

14:
[[

p>lon,III,χlon,III,φlon,III,γlon,III
]>

,mlon,III

]
← Longitudinal Transition(pIIa

,χIIa,φIIa,γc,λγ2ω̄γ ,Ts,0)

. Combine Segments

15: psat←
[
plon,I | plon,II | plon,III

]
16: return psat, χlon,III[:,mlon,III], φlon,III[:,mlon,III]

17: end procedure

The parameterization for smoothed altitude transition trajectories was obtained for an arbi-

trarily selected spiral flight path angle. We optimally select γc such that the altitude transition rate

is maximized while maintaining both dynamic and visual feasibility constraints. Dynamical path

feasibility is enforced by selecting a feasible flight path angle rate and enforcing that the flight path

angle magnitude be less than the maximum allowable flight path angle magnitude γc,max. We en-
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force visual feasibility by again checking discretely-sampled trajectory points using the differential

flatness map.

The full process for defining a smooth altitude transition trajectory given initial UAS states

is given by Algorithm 8.

Algorithm 8 Smooth Altitude Planner
1: procedure SMOOTH ALTITUDE PLANNER(p0,χ0,φ0,γ0,Vg, pD,des)

2: Define the minimum flight path angle rate magnitude ω̄γ

3: Define the maximum flight path angle γmax

4: Define initial flight path angle search step γstep

5: Define gimbal saturation limits θel,min,θel,max,θaz,min,θaz,max

6: Select Ts << 1 (e.g. 0.01)

7: t0a← 0

8: γc← γmax

9: Θel←{}

10: Θaz←{}

11: while θel,min ≤Θel ≤ θel,max and θaz,min ≤Θaz ≤ θaz,max do

12: ptraj, χ f , φ f ← Smooth Altitude Transition(p0,χ0,φ0,γ0,Vg,γc, ω̄γ ,Ts, t0a, pD,des)

13: Calculate ṗtraj, p̈traj, and p(3)
traj using Eqs. (5.53) to (5.56), (5.60) and (5.61)

14: Calculate sampled gimbal inputs Θel,Θaz using flatness proof in [39]

15: γc← γc− γstep

16: end while

17: return ptraj, ṗtraj, p̈traj,
...p traj, χ f , φ f

18: end procedure

As with Algorithm 5, Algorithm 8 employs a simple line search to identify a large feasible

flight path angle for the altitude transition; however, the maximum feasible flight path angle could

be found using other optimization techniques such as a bisection search [42].
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Table 5.2: Fixed-wing system parameters

Param Value Param Value Param Value
m 1800.0 Jx 700.0 Jy 5000.0
Jz 5500.0 Jxz 70.0 S 9.0
b 7.0 c 1.5 CL0 0.15

CLα
4.5 CLq 9.0 CLδe

0.3
CD0 0.02 CDα

-0.3 CDq 0.0
Cl0 0.0 Clβ -0.16 Clp -0.4
Clr 0.1 Clδa

0.06 Clδr
0.04

Cm0 -0.02 Cmα
-2.4 Cmq -11.0

Cmδe
-0.5 Cn0 0.0 Cnβ

0.1
Cnp 0.02 Cnr -0.3 Cnδa

0.0
Cnδr

-0.08 CY0 0.0 CYβ
-0.5

CYp -0.1 CYr 0.6 CYδr
0.16

5.6 Simulation Results

To demonstrate the ability of the proposed smoothed bi-tangent framework from Sec-

tion 5.4 and the altitude transition framework from Section 5.5 in maintaining dynamical and visual

feasibility of a detected target while transitioning to an overhead orbit, a UAS with an inertially-

mounted, two-axis gimbal camera system observing a ground target was simulated using the ROS

Gazebo simulation environment. The UAS dynamics were implemented following the fixed-wing

model in [31] with parameters defined in Table 5.2.

Model simplifications and system disturbances were accounted for by pairing the differential-

flatness control inputs with an linear quadratic regulator (LQR) feedback controller [39] as shown

in Fig. 5.11.

The UAS was given a starting NED inertial position of [−400,100,−3000] meters initially

facing north with an airspeed velocity of 120 meters per second and initial gimbal azimuth and

elevation angles of −90 degrees and 88 degrees respectively. The ground target was given a static

inertial position at the origin. The UAS executed a level flight trajectory until the target of interest

was detected. A smoothed bi-tangent trajectory was then calculated and tracked to transition to an

orbit of 2500 meter radius over the target of interest. The UAS then executed a smooth altitude

transition trajectory to an orbit altitude of 2000 meters. Commanded roll rates and flight path angle

rates were selected as 8 degrees per second and 0.1 degrees per second respectively. Gimbal was
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Figure 5.11: Control architecture defined in [39] uses a given inertial position trajectory p up to
its third derivative to define the predicted control u(df) and desired aircraft states x(df) using the
differential-flatness mapping. The error between the desired states and actual states x are passed
to an LQR controller whose control output ulqr augments the feed-forward inputs produced by the
differential-flatness map. The positional trajectory and its derivatives are provided by the smooth
bi-tangent and altitude transition frameworks.

given elevation saturation limits at 0 and 90 degrees along with azimuth limits of ±150 degrees.

The horizontal field-of-view angle of the camera was 8.08 degrees with an aspect ratio of 4:3.

The resulting trajectory projected onto the north-east plane is shown in Fig. 5.12 with the altitude

trajectory shown in Fig. 5.13.

The dynamic feasibility of the calculated path is demonstrated by the minimal tracking error of the

UAS and path shown by Fig. 5.14. Visual feasibility is shown by the boundedness of the gimbal

angles within their respective saturation limits shown in Fig. 5.15 and by reasonably bounded

alignment error between the target and the optical axis produced by the gimbal inputs obtained

from the differential-flatness mapping illustrated by Fig. 5.16.

As can be seen in Figs. 5.14 to 5.16, the smoothed bi-tangent and altitude transition models

are successfully able to produce both dynamically and visually feasible trajectories for converging

to an orbit over a known target and transitioning to a second orbit altitude. Dynamical feasibility

of the path was demonstrated by the minimal tracking error of the UAS and visual feasibility

between the UAS and target was demonstrated by gimbal angles never passing saturation bounds.

Throughout the trajectory, target alignment with the optical axis never surpassed 2.5 degrees. For

the defined camera parameters, the smallest possible alignment error resulting in loss of target

visibility was 3 degrees, therefore the target was continuously held in the camera field-of-view.
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Figure 5.12: UAS and target positional states over time projected onto the inertial north-east plane.
Projection of the camera field-of-view on the ground plane containing the target is shown. The
UAS is show to accurately transition to an overhead orbit of the intended target.

Figure 5.13: UAS altitude trajectory. The smoothed altitude transition is executed at the end of the
smooth bi-tangent transition at approximately 130 seconds with a selected flight path angle rate of
0.1 degrees per second.
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Figure 5.14: Error between actual UAS positional states and the desired positional outputs of the
proposed path planner. Dynamical feasibility of the path is demonstrated by the minimal tracking
error of the UAS. Positional errors are transformed to axial (ea), transverse (et), and altitude (h)
error for interpretation convenience.

Figure 5.15: Gimbal azimuth and elevation angle trajectories resulting from following the proposed
path planner. Visual feasibility between the UAS and target is demonstrated by elevation and
azimuth angles never passing their saturation bounds at (0,90) and (-150,150) degrees respectively.
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Figure 5.16: Angle alignment error between the optical axis and the vector defining the line-of-
sight between the camera and the target of interest. Alignment error never surpasses 2.5 degrees.
The target is therefore maintained within the field-of-view of the camera throughout the entire
trajectory.

5.7 Conclusion

In this paper, we presented a path planning framework for a generalized fixed-wing aircraft

with a two-axis gimbal camera transitioning to an orbit over a known target and descending to a

new altitude without surpassing gimbal limits. The proposed framework was able to successfully

converge to an orbit over a ground target in simulation while maintaining continuous target visi-

bility. Future work includes defining sufficient conditions for the existence of smooth bi-tangent

trajectories without azimuth angle saturation. Feasibility conditions could also be extended to

include the full field-of-view of the camera instead of strict alignment with the optical axis. Ad-

ditional work could also be done in adjusting the planning framework for wind conditions and

high-velocity target motion.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

In this thesis we explored the challenges of tracking very small, slow-moving targets from

a gimballed UAS camera. We provided guidelines for tuning the parameters of the Visual MTT

algorithm to enhance its performance in detecting and tracking these types of targets and demon-

strated its effectiveness by successfully tracking walking human targets on 2048×1500 resolution

test data obtained from an aircraft equipped with a camera flying at 1400 meters.

To account for loss of target visibility the rotational constraints of a gimballed UAS were

considered and an algorithmic approach was derived for determining the rotational limits of the

system along its available rotational degrees of freedom. A method for calculating the most critical

rotational bound resulting in the fastest loss or acquisition of target visibility for a given aircraft

and target configuration was also derived. The accuracy of these calculated bounds was validated

in simulation.

To ensure a known target can continuously be observed from a gimballed fixed-wing UAS

under both dynamic and visual constraints, a differential flatness model was derived for gimballed

fixed-wing UAS which can be used both as a feedforward component in trajectory tracking as well

as a predictive input map for a given trajectory. This algebraic input map was used to develop

a path planning framework for producing both dynamically and visually feasible trajectories for

transitioning a gimballed fixed-wing aircraft to an orbit over a known target along with feasible

trajectories for transitioning to orbits or varying altitudes. The proposed framework was able

to maintain target visibility throughout both the smoothed bi-tangent and altitude orbit transition

trajectories while maintaining continuous target visibility with a maximum optical axis alignment

error of approximately 2.5 degrees.

6.1 Summary of Contributions

The contributions of this thesis are listed below.
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• This thesis introduced guidelines and tuning parameters for tracking very small, slow-moving

targets in high-resolution images with the Visual MTT algorithm. The effectiveness of these

guidelines was demonstrated in tracking walking human targets described 10− 15 pixels

from a high altitude on real flight test data.

• This work derived an algorithm for determining the rotational limits of gimballed UAS track-

ing a known target. This result provides insight into the sensitivity of target visibility due to

rotations about the controllable axes of the UAS.

• An algorithm was defined for determining the most critical UAS or gimbal rotation resulting

in the fastest loss or acquisition of target visibility. This algorithm could easily be extended to

work with controllers for assessing visual sensitivity for a given aircraft-target configuration.

• A novel differential flatness model and control framework was introduced for gimballed

fixed-wing aircraft allowing trajectory tracking under vision constraints. This control frame-

work demonstrated successful target tracking on simple trajectories and motivated the de-

velopment of a path planning framework with guarantees on dynamic feasibility and target

visibility.

• A path planning framework was presented for feasibly transitioning to an overhead orbit

over a target while maintaining constant target visibility. The framework includes lateral

transitions to overhead orbits as well as transitions between orbits of different altitudes. The

effectiveness of this framework is demonstrated on a UAS with slow dynamics in simulation

by continuously maintaining target visibility throughout both proposed transition trajecto-

ries.

6.2 Future Work

The various algorithms and theories presented in this thesis can be improved in many ways.

Generically, the differential flatness control and path planning frameworks function under the as-

sumption that there are no significant wind disturbances in the environment. It is also assumed

generally that the angle of attack of the aircraft is held constant, which is especially not the case

for more aggressive or acrobatic maneuvers. Extending these models to appropriately account
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for the effects of relative airspeed on the aircraft would greatly add to their utility in real-world

applications.

6.2.1 Small Target Tracking

The Visual MTT algorithm is currently being refactored to function with a new Recursive

RANSAC back end that is able to generate models described by lie groups. As a result, the tuning

parameters of Visual MTT are in the process of being adjusted as well. Additional work could

therefore be done to extend the proposed parameter tuning guidelines for the new parameters.

6.2.2 Visual Rotational Constraints

One significant limitation of the VRC and VRCC algorithms discussed in Chapter 3 is that

they exclusively account for rotational limitations of the system but do not in any way define limits

on translational motion of the camera. Especially in circumstances where targets are observed in

close proximity, translational motion of the camera can have significant impacts on the camera’s

ability to observe a desired target.

Another significant limitation of these algorithms is that the calculated bounds only account

for motion along a single axis at a time. As shown in the simulation results of Chapter 3, rotation

along on axis transforms the rotational bounds of other axes. Extending the algorithm to detect

boundary conditions for hybrid rotations about multiple rotational axes simultaneously would al-

low for more realistic boundary analysis, especially in UAS applications where hybrid rotations

are commonly encountered.

This work could potentially be utilized in a visual servoing framework by using distances

from calculated critical rotational bounds as control variables to drive a known target to the center

of a camera’s field-of-view using its controllable degrees of freedom. The proposed algorithms

could also be extended to account for occlusion points created by features of the UAS such as

wings, landing gear, payloads, etc.
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6.2.3 Gimballed Fixed-Wing Flatness Control

The differential flatness control model could be improved by continuously re-linearizing

the LQR controller gains in the control framework about the given trajectory. For simplicity, the

current approach uses a state space model obtained by linearizing the dynamic model once about

level flight conditions. This re-linearization could greatly improve the tracking capabilities of the

aircraft relative to the desired trajectory resulting in even more accurate input predictions for visual

feasibility analysis.

Another significant improvement would be to account for the full camera field-of-view

in assessing visual feasibility. Currently the proposed model constrains the optical axis of the

camera to be exactly aligned with the target. If gimbal angles cannot produce this alignment,

the configuration is considered not visually feasible. Intuitively, however, the field-of-view of the

camera occupies an expanded region around the optical axis. Thus, some misalignment may be

allowable for maintaining target visibility. Additional work could also be done to analyze the

confidence of the model under model and sensor uncertainties.

6.2.4 Gimballed Fixed-Wing Flatness Path Planning

Perhaps the greatest area of improvement for the path planning framework is defining suf-

ficient conditions for the existence of smooth bi-tangent trajectories without azimuth angle sat-

uration. Sufficient conditions were provided for the existence of a smooth bi-tangent trajectory

without elevation saturation, however, without a sufficiency condition for azimuth the framework

cannot guarantee the existence of a fully visually feasible trajectory solution. This limits confi-

dence in using the algorithm online where rapid calculation of a transition trajectory is critical.

Another improvement to the path planner could be to account for transitioning to an orbit

trajectory over a rapidly moving target. The current framework assumes that the target is moving

slow enough to be considered static resulting in a transition trajectory to a final static orbit. For

fast-moving targets, the framework could be extended to transition to a translating orbit trajectory

over the target instead.
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APPENDIX A. PRE-LOADED LATERAL TRANSITION TRAJECTORY

For optimization routines calculating discrete lateral transition trajectories, reconstruction

will likely be performed a significant number of times. Numerically integrating the curve at small

time intervals over a large trajectory can make this process computationally infeasible for many

applications. By using a pre-defined constant roll rate input, these transition paths can be com-

puted offline and then appropriately segmented and transformed to represent initial and endpoint

conditions of the curves.

We begin by defining the discrete RK45 approximation of the vehicle states assuming ini-

tial conditions p0 = 0, χ0 = 0, and φ0 = 0 up to a maximum desired roll condition φmax using

Algorithm 3 as

[xtr+,mz]← Lateral Transition(p0,χ0,φ0, φ̇des,Ts,φmax).

This segment accounts for all possible states of the lateral transition segment with a positive roll

angle. States associated with a negative roll angle are obtained by propagating backward in time,

or more simply by reflecting the discrete states across the origin and negating the position and roll

angle states using Algorithm 9
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Algorithm 9 Pre-load Lateral Transition Trajectory
1: procedure PRE-LOAD LATERAL TRANSITION(ω̄φ ,Ts,φmax)

2: Calculate mz =
⌈
(φmax−φ0)

ω̄φ Ts

⌉
from Eq. (5.42)

3: Set xpre[:,mz] = [0,0,0,0,0]>

4: i← 1

5: while i <= mz do

6: xpre[:,mz + i] = fRK45(xpre[mz + i−1])

7: xpre[:,mz− i] = Irefxpre[mz + i]

8: i← i+1

9: end while

10: return xpre, mz

11: end procedure

where xpre is the preloaded transition state matrix, mz is the index to the zero state at the

center of the state matrix, and Iref is a reflection matrix defined as

Iref =



−1 0 0 0 0

0 −1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −1


.

With the full transition trajectory state vector defined, we can then segment and appropriately

transform it to arbitrary transition trajectory endpoint constraints.

We first note that Algorithm 9 pre-loads a transition trajectory under the assumption that

the roll rate command is a positive constant value. However, smoothed bi-tangent trajectories will

require both positive and negative roll rate commands to smooth the various transition segments.
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For notational simplicity, we define a roll direction flag λφ to be

λφ =

1, if φ f ≥ φ0

−1, otherwise
(A.1)

Given a preloaded transition, it can be shown that the transition curve for a negative roll rate

command is given by

xsgn = Iinvxpre +Tinv (A.2)

where

Iinv =



λφ 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 λφ 0

0 0 0 0 λφ


and

Tinv =
[
0 0 0 λφ−1

2 π 0
]>

such that Iinv and Tinv reflect the preloaded trajectory across the x-axis when roll rate is to be

negated.

To properly segment the full transition trajectory to appropriately satisfy initial conditions,

we begin by defining the index at which the initial aircraft roll matches the preloaded trajectory as

ms = mz +λφ

⌈
φ0

φ̇Ts

⌉
(A.3)

with the index to the end of the transition segment calculated as

me = mz +λφ

⌈
φ f

φ̇Ts

⌉
. (A.4)

Note that since xsgn inverts the roll angle trajectory of xpre, the start and finish indices would be

negated for a constant negative roll rate command. The desired trajectory is then all discrete states

between the starting and finishing indices of the preloaded or negated transition trajectory estimate.
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The transition segment can then be appropriately transformed to meet the initial transition states

by rotating the shifting the segment. To rotate the segment, we simply calculate the pre-load offset

course angle as

χoff =
[
0 0 0 1 0

]
xsgn[:,ms] (A.5)

with the full course angle correction being

χcorr = χ0−χoff. (A.6)

Positional rotation offsets due to the course angle correction can be rectified using the rotation

matrix

Rcorr =


cos(χcorr) −sin(χcorr) 0

sin(χcorr) cos(χcorr) 0

0 0 1

 . (A.7)

The pre-load positional offset would be found similarly as

poff =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

xsgn[ms]. (A.8)

With the correct transformations defined, we then define the transition trajectory to be

ptr = p0 +Rcorr




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

xsgn[ms : me]− poff

 , (A.9)

χtr =
[
0 0 0 1 0

]
xsgn[ms : me]−χcorr, (A.10)

φtr =
[
0 0 0 0 1

]
xsgn[ms : me] (A.11)

and

xtr =
[

p>tr χtr φtr

]>
, (A.12)
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where the vector index notation [a : b] indicates the vector subset created by all vector column

elements between indices a and b. The terminating index mpre can then be calculated by simply

subtracting the starting and ending indices as

mpre = me−ms (A.13)

The full discrete transition segment can be calculated once offline for a selected roll rate

and then segmented and transformed for all online calculations. The solution rates for Eq. (5.48)

using preloaded transition trajectories compared to transition trajectories calculated numerically

online at each iteration are shown in Fig. A.1.
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Figure A.1: Solution rate comparison of smoothed bi-tangent solutions using preloaded vs directly
calculated transition path segments relative to roll rate magnitude. The preloaded solutions signifi-
cantly outperform the direct solutions by over a factor of 50 in many cases with equivalent solution
accuracy. By sacrificing flexibility in selecting different roll rate commands online, the smoothed
bi-tangent solution rate from preloaded transition paths becomes more feasible for real-time per-
formance.
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